

Prof. Dr. M. Schulze und Raul Epure

Sommersemester 2019

Einführung in die Topologie Blatt 6

Abgabetermin: Dienstag, 25.06.2019, 10:00 Uhr

Aufgabe 21. Sei X ein topologischer Raum, $a \in S^1$ und $f: S^1 \to X$ eine stetige Abbildung. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (a) f ist homotop relativ $\{a\}$ zu einer konstanten Abbildung.
- (b) f ist homotop zu einer konstanten Abbildung.
- (c) f lässt sich zu einer stetigen Abbildung $\tilde{f}: D^2 \to X$ fortsetzen.

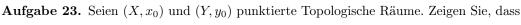
Aufgabe 22. Sei

$$X:=\left(I\times\{0\}\right)\cup\left(\left(\{0\}\cup\left\{\frac{1}{n}\mid n\in\mathbb{N}_{>0}\right\}\right)\times I\right)\subseteq\mathbb{R}^2$$

der rechts dargestellte **topologische Kamm** versehen mit der Teilraumtopologie. Zeigen Sie:

- (a) id_X ist homotop zu einer konstanten Abbildung.
- (b) Ist $n \in \mathbb{N}_{>0}$, so enthält jeder Weg γ_n , der $\left(\frac{1}{n},1\right)$ und (0,1) verbindet, den Punkt (0,0).
- (c) id_X ist nicht homotop zu einer konstanten Abbildung relativ dem Punkt $\{(0,1)\}.$

Hinweis zu (b): Betrachten Sie eine geeignete Projektion und verwenden Sie den Zwischenwertsatz.



$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Aufgabe 24. Sei G eine topologische Gruppe (siehe Aufgabe 18). Wir bezeichnen das neutrale Element von G mit e. Für $\alpha, \beta \in \Gamma(G, e)$ definieren wir

$$\alpha \cdot \beta : I \to G, t \mapsto \alpha(t) \cdot \beta(t).$$

Zeigen Sie:

- (a) $\alpha \cdot \beta \in \Gamma(G, e)$.
- (b) Für $\alpha, \beta \in \Gamma(G, e)$ gilt $[\alpha] \bullet [\beta] = [\alpha \cdot \beta]$.
- (c) $\pi_1(G, e)$ ist abelsch.

Hinweis zu (b): Zeigen Sie zunächst, dass gilt: $\alpha \bullet \beta = (\alpha \bullet \varepsilon) \cdot (\varepsilon \bullet \beta)$, wobei ε die Konstante Schleife bezeichnet.

