Plane Algebraic Curves

Summer Term 2019 - Problem Set 6
Due Date: Friday, July 5, 2019, 10:00 am
Exercise 1. By considering lines passing through convenient points, prove the following results:
(a) Let P be a point on an affine curve F. Show that there is a rational function $\phi \in K(F)$ which has exactly one pole which is simple and at P, i. e. such that $\mu_{p}(\phi)=-1$ and $\mu_{Q}(\phi) \geqslant 0$ for all $Q \neq P$.
(b) Let P_{1} and P_{2} be distinct points on a projective conic F. Show that there is a rational function $\phi \in K(F)$ with $\mu_{P_{1}}(\phi)=1, \mu_{P_{2}}(\phi)=-1$, and $\mu_{P}(\phi)=0$ at all other points P of F.

Exercise 2. Let P be a point on an affine curve F. Show that there are ring isomorphisms:
(a) $\mathscr{O}_{F, P} \simeq \mathscr{O}_{\mathbb{A}^{2}, P} /\langle F\rangle$.
(b) $K(F) \simeq K\left(F^{h}\right)$ with

$$
K(F)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in A(F) \text { and } g \neq 0\right\}
$$

and

$$
K\left(F^{h}\right)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in S_{d}\left(F^{h}\right) \text { for some } d \in \mathbb{N} \text { and } g \neq 0\right\}
$$

Exercise 3.

(a) Let F be a projective curve, and let f be a homogeneous polynomial with $\operatorname{div} f=D+E$ for two divisors D and E on F. Show: if D^{\prime} is linearly equivalent to D (i.e. $D-D^{\prime}=\operatorname{div}\left(\frac{f_{1}}{f_{2}}\right)$ for some homogeneous polynomials of the same degree) and $D^{\prime}+E$ is effective then there exists $B \in S(F)$ such that $\operatorname{div}\left(f f_{2}\right)=\operatorname{div}\left(f_{1}\right)+\operatorname{div}(B)$. Deduce that $\operatorname{div} B=D^{\prime}+E$.
(b) Let P, Q, R, S be four distinct points on a cubic curve F. Show that if the intersection point of the lines $\overline{P Q}$ and $\overline{R S}$ lies on F, then $P+Q \sim R+S$.
(c) Show the converse statement: if $P+Q \sim R+S$ then the intersection point of the lines $\overline{P Q}$ and $\overline{R S}$ lies on F. Hint: use the first question with $D+E=\operatorname{div}(\overline{P Q})$.

Exercise 4. Let $F=y^{2} z-x^{3}+x z^{2}$.
(a) Compute the divisor $\operatorname{div}\left(\frac{y}{z}\right)$ on F.
(b) If ϕ is any non-zero rational function on F whose divisor is the one computed in (a), show that $\phi=\lambda \frac{y}{z}$ for some $\lambda \in K^{*}$.

