

Plane Algebraic Curves

Summer Term 2019 - Problem Set 6

Due Date: Friday, July 5, 2019, 10:00 am

Exercise 1. By considering lines passing through convenient points, prove the following results:

- (a) Let P be a point on an affine curve F. Show that there is a rational function $\phi \in K(F)$ which has exactly one pole which is simple and at P, i. e. such that $\mu_p(\phi) = -1$ and $\mu_Q(\phi) \ge 0$ for all $Q \ne P$.
- (b) Let P_1 and P_2 be distinct points on a projective conic F. Show that there is a rational function $\phi \in K(F)$ with $\mu_{P_1}(\phi) = 1$, $\mu_{P_2}(\phi) = -1$, and $\mu_P(\phi) = 0$ at all other points P of F.

Exercise 2. Let P be a point on an affine curve F. Show that there are ring isomorphisms:

- (a) $\mathscr{O}_{F,P} \simeq \mathscr{O}_{\mathbb{A}^2,P} / \langle F \rangle.$
- (b) $K(F) \simeq K(F^h)$ with

$$K(F) = \left\{ \frac{f}{g} \mid f, g \in A(F) \text{ and } g \neq 0 \right\}$$

 and

$$K(F^h) = \left\{ \frac{f}{g} \mid f, g \in S_d(F^h) \text{ for some } d \in \mathbb{N} \text{ and } g \neq 0 \right\}.$$

Exercise 3.

- (a) Let F be a projective curve, and let f be a homogeneous polynomial with div f = D + E for two divisors D and E on F. Show: if D' is linearly equivalent to D (i.e. $D D' = \operatorname{div}\left(\frac{f_1}{f_2}\right)$ for some homogeneous polynomials of the same degree) and D' + E is effective then there exists $B \in S(F)$ such that div $(ff_2) = \operatorname{div}(f_1) + \operatorname{div}(B)$. Deduce that divB = D' + E.
- (b) Let P, Q, R, S be four distinct points on a cubic curve F. Show that if the intersection point of the lines \overline{PQ} and \overline{RS} lies on F, then $P + Q \sim R + S$.
- (c) Show the converse statement: if $P + Q \sim R + S$ then the intersection point of the lines \overline{PQ} and \overline{RS} lies on F. Hint: use the first question with $D + E = \operatorname{div}(\overline{PQ})$.

Exercise 4. Let $F = y^2 z - x^3 + x z^2$.

- (a) Compute the divisor div $\left(\frac{y}{z}\right)$ on F.
- (b) If ϕ is any non-zero rational function on F whose divisor is the one computed in (a), show that $\phi = \lambda \frac{y}{z}$ for some $\lambda \in K^*$.