Plane Algebraic Curves

Summer Term 2019 - Problem Set 5

Due Date: Friday, June 21, 2019, 10:00 am
Exercise 1. Let K be an infinite field (for example algebraically closed). Let $P_{1}, \ldots, P_{6} \in \mathbb{P}^{2}$ be distinct points so that the six lines $\overline{P_{1} P_{2}}, \overline{P_{2} P_{3}}, \ldots, \overline{P_{5} P_{6}}, \overline{P_{6} P_{1}}$ (which can be thought of as the sides of the hexagon with vertices $\left.P_{1}, \ldots, P_{6}\right)$ are also distinct. Let $P=\overline{P_{1} P_{2}} \cap \overline{P_{4} P_{5}}, Q=\overline{P_{2} P_{3}} \cap \overline{P_{5} P_{6}}$ and $R=\overline{P_{3} P_{4}} \cap \overline{P_{6} P_{1}}$ be the intersection points of opposite sides of the hexagon.
(a) Let F be an irreducible projective conic passing through P_{1}, \ldots, P_{5}. We assume that $\overline{P_{1} R}$ is not tangent to F. Let $P_{6}^{\prime}=F \cap \overline{P_{1} R}$ be the other intersection point of F and $\overline{P_{1} R}$. What can we say about the points $P^{\prime}=\overline{P_{1} P_{2}} \cap \overline{P_{4} P_{5}}, Q^{\prime}=\overline{P_{2} P_{3}} \cap \overline{P_{5} P_{6}^{\prime}}$ and $R^{\prime}=\overline{P_{3} P_{4}} \cap \overline{P_{6}^{\prime} P_{1}}$? Show that $\overline{P R}=\overline{P^{\prime} R^{\prime}}$.
(b) We assume that P, Q, R lie on a line. Prove that $Q=Q^{\prime}$ and show that $P_{6}=P_{6}^{\prime}$. It gives us the following converse of Pascal's theorem: with the same notations, if P, Q, R lie on a line, then P_{1}, \ldots, P_{6} lie on a conic.

Exercise 2 (Cayley-Bacharach Theorem). Let K be an algebraically closed field. Let F and G be two smooth projective cubics. We assume that F and G intersect in exactly 9 distinct points P_{1}, \ldots, P_{9}. Let E be another cubic which contains the points P_{1}, \ldots, P_{8}. We assume that E does not contain P_{9}. We denote by P_{9}^{\prime} the intersection point of E with F which is not in $\left\{P_{1}, \ldots, P_{8}\right\}$.
(a) We assume that L is a line passing through P_{9} which does not contain $P_{1}, \ldots, P_{8}, P_{9}^{\prime}$ and which is not tangent to F at any point. We set $H=E L$. Use Noether's Theorem to prove that there exist homogeneous polynomials A and B of degree 1 such that $H=A F+B G$.
(b) By considering the intersection points of L and F, prove that $L=B$.
(c) Deduce the following theorem: if F and G are two smooth projective cubics which intersect in exactly 9 points P_{1}, \ldots, P_{8} and if E is another cubic containing P_{1}, \ldots, P_{8}, then $P_{9} \in E$. Hint: Show that $P_{9}^{\prime} \in B$.

Exercise 3. Let K be an algebraically closed field and let F be a smooth projective cubic. We assume that L is a line passing transversally through two inflection points P_{1} and P_{2} of F. We recall from question 3 b) of Problem set 3 that P is an inflection point of F if and only if $\mu_{P}\left(F, T_{P} F\right) \geqslant 3$.
(a) Compute the intersection multiplicity $\mu_{P}(F, L)$ at each intersection point P of F and L.
(b) Let $H=\prod_{P \in F \cap L} T_{p} F$. Consider the non reduced curve $G=L^{2}$. Prove using Noether's Theorem that there exist homogeneous polynomials A and B respectively of degree 0 and 1 such that $H=$ $A F+B G$.
(c) Prove that B contains P_{1} and P_{2}.
(d) Prove that P_{3} is also an inflection point of F.

Exercise 4. Let K be an algebraically closed field. Consider the rational function $\varphi=\frac{x^{2}}{y^{2}+y z}$ on the projective curve $F=y^{2} z+x^{3}-x z^{2}$. Let $P=(0: 0: 1) \in F$.
(a) Compute the order $n=\mu_{P}(\varphi)$.
(b) Determine a local coordinate $t \in \mathscr{O}_{F, P}$.
(c) Give an explicit description of φ in the form $\varphi=c t^{n}$ for some $c \in \mathscr{O}_{F, P}^{*}$, where c should be written as $\frac{f}{g}$ for some homogeneous $f, g \in S(F)$ with $f(P) \neq 0$ and $g(P) \neq 0$.

