

Plane Algebraic Curves

Summer Term 2019 - Problem Set 4

Due Date: Friday, June 7, 2019, 10:00 am

One can use Bézout's theorem for some of the following exercises: If F and G are projective curves without common components over an infinite field K, then $\sum_{P \in F \cap G} \mu_P(F,G) \leq \deg(F) \cdot \deg(G)$, with equality if K is algebraically closed.

Exercise 1. Let $d \ge 1$ be an integer. We denote by $S_d = K[x, y, z]_d$ the vector space spanned by the monomials of degree d. We recall that $\dim_K(S_d) = \frac{(d+1)(d+2)}{2}$.

- (a) Let $r \in \mathbb{N}$ and $P \in \mathbb{P}^2$. We set $S_d(rP) = \{F \in S_d \mid m_P(F) \ge r\}$. Compute $\dim_K(S_d(rP))$.
- (b) Let $r_1, \ldots, r_n \in \mathbb{N}$ and $P_1, \ldots, P_n \in \mathbb{P}^2$. We set

$$S_d(r_1P_1, \ldots, r_nP_n) = \{F \in S_d \mid \forall i \in \{1, \ldots, n\}, m_{P_i}(F) \ge r_i\}$$

Show that $\dim_K S_d(r_1P_1, \dots, r_nP_n) \ge \frac{(d+1)(d+2)}{2} - \sum_{i=1}^n \frac{r_i(r_i+1)}{2}$.

(c) With the same notations, show that if $\sum_{i=1}^{n} \frac{r_i(r_i+1)}{2} \leq \frac{d(d+3)}{2}$ then there exists a curve (maybe with multiple factors) passing through each of the points P_i with multiplicity at least r_i .

Exercise 2.

(a) Deduce the following real version of Bézout's Theorem from the complex case: If F and G are two real projective curves without common components, then

$$\sum_{P \in F \cap G} \mu_P(F,G) = \deg F \cdot \deg G \mod 2$$

(One can use without proving it that for $P \in \mathbb{P}^2_{\mathbb{R}}$, the intersection multiplicity at P of the real projective curves F and G is the same as the intersection multiplicity at P of F and G as complex curves.)

(b) Deduce that two real projective curves of odd degree have at least one intersection point.

Exercise 3. Let F be a complex irreducible projective curve of degree $d \ge 2$, and let $P_0 \in \mathbb{P}^2$ be a point. We set $m := m_{P_0}(F) \in \mathbb{N}$.

- (a) Let L be a line in \mathbb{P}^2 containing P_0 . Show that $\mu_{P_0}(F,L) \ge m$. When do we have $\mu_{P_0}(F,L) > m$?
- (b) Show that there are only finitely many smooth points $P \neq P_0$ of F such that the line passing through P_0 and P is tangent to F at P.
- (c) Show that for all but finitely many lines L in \mathbb{P}^2 through P_0 , the intersection $F \cap L$ consists of exactly d m points not equal to P_0 .

Hint: One can use results from the previous problem sets.

Exercise 4.

- (a) Show that a (not necessarily irreducible) reduced projective curve of degree $d \ge 2$ over an infinite field has at most $\frac{d(d-1)}{2}$ singular points.
- (b) Find an example for each d in which this maximal number of singular points is actually reached.