# Plane Algebraic Curves 

Summer Term 2019 - Problem Set 4

Due Date: Friday, June 7, 2019, 10:00 am
One can use Bézout's theorem for some of the following exercises: If $F$ and $G$ are projective curves without common components over an infinite field $K$, then $\sum_{P \in F \cap G} \mu_{P}(F, G) \leqslant \operatorname{deg}(F) \cdot \operatorname{deg}(G)$, with equality if $K$ is algebraically closed.

Exercise 1. Let $d \geqslant 1$ be an integer. We denote by $S_{d}=K[x, y, z]_{d}$ the vector space spanned by the monomials of degree $d$. We recall that $\operatorname{dim}_{K}\left(S_{d}\right)=\frac{(d+1)(d+2)}{2}$.
(a) Let $r \in \mathbb{N}$ and $P \in \mathbb{P}^{2}$. We set $S_{d}(r P)=\left\{F \in S_{d} \mid m_{P}(F) \geqslant r\right\}$. Compute $\operatorname{dim}_{K}\left(S_{d}(r P)\right)$.
(b) Let $r_{1}, \ldots, r_{n} \in \mathbb{N}$ and $P_{1}, \ldots, P_{n} \in \mathbb{P}^{2}$. We set

$$
S_{d}\left(r_{1} P_{1}, \ldots, r_{n} P_{n}\right)=\left\{F \in S_{d} \mid \forall i \in\{1, \ldots, n\}, m_{P_{i}}(F) \geqslant r_{i}\right\} .
$$

Show that $\operatorname{dim}_{K} S_{d}\left(r_{1} P_{1}, \ldots, r_{n} P_{n}\right) \geqslant \frac{(d+1)(d+2)}{2}-\sum_{i=1}^{n} \frac{r_{i}\left(r_{i}+1\right)}{2}$.
(c) With the same notations, show that if $\sum_{i=1}^{n} \frac{r_{i}\left(r_{i}+1\right)}{2} \leqslant \frac{d(d+3)}{2}$ then there exists a curve (maybe with multiple factors) passing through each of the points $P_{i}$ with multiplicity at least $r_{i}$.

## Exercise 2.

(a) Deduce the following real version of Bézout's Theorem from the complex case: If $F$ and $G$ are two real projective curves without common components, then

$$
\sum_{P \in F \cap G} \mu_{P}(F, G)=\operatorname{deg} F \cdot \operatorname{deg} G \bmod 2
$$

(One can use without proving it that for $P \in \mathbb{P}_{\mathbb{R}}^{2}$, the intersection multiplicity at $P$ of the real projective curves $F$ and $G$ is the same as the intersection multiplicity at $P$ of $F$ and $G$ as complex curves.)
(b) Deduce that two real projective curves of odd degree have at least one intersection point.

Exercise 3. Let $F$ be a complex irreducible projective curve of degree $d \geqslant 2$, and let $P_{0} \in \mathbb{P}^{2}$ be a point. We set $m:=m_{P_{0}}(F) \in \mathbb{N}$.
(a) Let $L$ be a line in $\mathbb{P}^{2}$ containing $P_{0}$. Show that $\mu_{P_{0}}(F, L) \geqslant m$. When do we have $\mu_{P_{0}}(F, L)>m$ ?
(b) Show that there are only finitely many smooth points $P \neq P_{0}$ of $F$ such that the line passing through $P_{0}$ and $P$ is tangent to $F$ at $P$.
(c) Show that for all but finitely many lines $L$ in $\mathbb{P}^{2}$ through $P_{0}$, the intersection $F \cap L$ consists of exactly $d-m$ points not equal to $P_{0}$.

Hint: One can use results from the previous problem sets.

## Exercise 4.

(a) Show that a (not necessarily irreducible) reduced projective curve of degree $d \geqslant 2$ over an infinite field has at most $\frac{d(d-1)}{2}$ singular points.
(b) Find an example for each $d$ in which this maximal number of singular points is actually reached.

