## Plane Algebraic Curves

Summer Term 2019 - Problem Set 3
Due Date: Friday, May 24, 2019, 10:00 am

Exercise 1. Let $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ be a projective coordinate transformation, that is to say a map of the form:

$$
f:\left(x_{0}: \cdots: x_{n}\right) \mapsto\left(f_{0}\left(x_{0}, \ldots, x_{n}\right): \cdots: f_{n}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

for linearly independent homogeneous linear polynomials $f_{0}, \ldots, f_{n} \in K\left[x_{0}, \ldots, x_{n}\right]$.
(a) Let $P_{1}, \ldots, P_{n+2} \in \mathbb{P}^{n}$ be points such that any $n+1$ of them are linearly independent in $K^{n+1}$, and similarly let $Q_{1}, \ldots, Q_{n+2} \in \mathbb{P}^{n}$ be points such that any $n+1$ of them are linearly independent. Show that there is a projective coordinate transformation $f$ with $f\left(P_{i}\right)=Q_{i}$ for all $i \in\{1, \ldots, n+2\}$.
(b) Let $F$ and $G$ be two smooth real projective conics with non-empty set of points. Show that there is a projective coordinate transformation of $\mathbb{P}^{2}$ that takes $F$ to $G$.

## Exercise 2.

(a) If $F, G$ are polynomials such that $F \mid G$ and $G$ is homogeneous, then $F$ is homogeneous.
(b) Prove that for a plane curve $F \in K[x, y]$ the number of tangents of $F$ at $P \in F$ is at most $m_{P}(F)$. Prove that if $K$ is algebraically closed, then the equality holds.

Exercise 3 (Hessian). Let $F$ be a projective curve in the homogeneous coordinates $x_{0}, x_{1}, x_{2}$. The Hessian associated with $F$ is $H_{F}:=\operatorname{det}\left(\frac{\partial^{2} F}{\partial_{x_{i}} \partial_{x_{j}}}\right)_{i, j=0,1,2}$ considered as an element of $K\left[x_{0}, x_{1}, x_{2}\right] / K^{*}$.
(a) Show that the Hessian is compatible with projective coordinate transformations (as in Exercise 1), that is to say, if a projective coordinate transformation takes $F$ to $F^{\prime}$ then it takes $H_{F}$ to $H_{F^{\prime}}$.
(b) Let $P \in F$ be a smooth point, and assume that the characteristic of $K$ is 0 . Show that $H_{F}(P)=0$ if and only if $\mu_{P}\left(F, T_{p} F\right) \geqslant 3$. Such a point is called an inflection point of $F$.
Hint: By (1), you may assume after a coordinate transformation that $P=(0: 0: 1)$ and $T_{p} F=x_{1}$.

Exercise 4. The following formula is known as Bézout's Theorem:
If $F$ and $G$ are two projective curves without common component over an infinite field then

$$
\begin{equation*}
\sum_{P \in F \cap G} \mu_{P}(F, G) \leqslant \operatorname{deg}(F) \cdot \operatorname{deg}(G) \tag{1}
\end{equation*}
$$

with equality if the ground field is algebraically closed.
For the following complex affine curves $F$ and $G$, determine the points at infinity of their projective closures, and use (1) to read off the intersection multiplicities at all points of $F \cap G$.
(a) $F=x+y^{2}$ and $G=x+y^{2}-x^{3}$.
(b) $F=y^{2}-x^{2}+1$ and $G=(y+x+1)(y-x+1)$.

