Plane Algebraic Curves

Summer Term 2019 - Problem Set 1
Due Date: Friday, April 26, 2019, 10:00 am

Exercise 1. Consider the curves $F_{1}=y-x^{2}$ and $F_{2}=x^{3}-y^{2}$ over K.
(a) Show that the ring $R_{1}:=K[x, y] /\left\langle F_{1}\right\rangle$ is isomorphic to $K[t]$.
(b) By considering the intersection of G with a line passing through the origin with arbitrary slope t, show that:

$$
V\left(F_{2}\right)=\left\{\left(t^{2}, t^{3}\right) \in K^{2} \mid t \in K\right\}
$$

(c) Show that the ring $R_{2}:=K[x, y] /\left\langle F_{2}\right\rangle$ is isomorphic to $K\left[t^{2}, t^{3}\right]$.
(d) Show that the rings R_{1} and R_{2} are not isomorphic.

Exercise 2.

(a) Draw a picture of the following real curves:

$$
F_{1}=y^{3} x^{6}-y^{6} x^{2}, \quad F_{2}=x^{2}+y^{2}+2 y
$$

(b) What are the irreducible components of F_{1} and F_{2} ?
(c) Determine the intersection points of F_{1} and F_{2}.

Exercise 3 (Pythagorean triples). Let $F=x^{2}+y^{2}-1 \in K[x, y]$ be the unit circle over K. We assume that the characteristic of K is not 2 .
(a) Let L be a line passing through $(-1,0)$ and with slope t. Considering the intersection points of L with F, show that the set of points of F is

$$
V(F)=\{(-1,0)\} \cup\left\{\left.\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right) \right\rvert\, t \in K \text { with } 1+t^{2} \neq 0\right\}
$$

(b) Prove that the integer solutions (a, b, c) of the equation $a^{2}+b^{2}=c^{2}$ are, up to permuting a and b, exactly the triples of the form $\lambda \cdot\left(u^{2}-v^{2}, 2 u v, u^{2}+v^{2}\right)$ with $\lambda, u, v \in \mathbb{Z}$. These triples of integers are called Pythagorean triples.

Exercise 4 (Homogeneous polynomials).
(a) Let $F \in K[x, y]$ be a homogeneous polynomial. We assume that $y-1$ is not an irreducible component of F. Show that the irreducible components and corresponding multiplicities of F are in bijection with those of $F(x, 1) \in K[x]$.
(b) Let $F \in K\left[x_{1}, \ldots, x_{n}\right]$. Show that F is homogeneous of degree d if and only if for all $\lambda \in K$, $F\left(\lambda \cdot x_{1}, \ldots, \lambda \cdot x_{n}\right)=\lambda^{d} \cdot F\left(x_{1}, \ldots, x_{n}\right)$.

