Computer Algebra Summer Term 2019 - Sheet 8 Due Date: Thursday, June 13, 2019, 10:00 am **Exercise 26.** Consider the local ring $A = \mathbb{Q}[x, y, z, w]_{\langle x, y, z, w \rangle}$ and the A-modules $$M_1 = A/\langle yz - xw, z^3 - yw^2, xz^2 - y^2w, y^3 - x^2z \rangle$$ and $M_2 = A/\langle xyz, yzw, zwx, wxy \rangle$. Can M_1 and M_2 be isomorphic as A-modules? Prove your claim. **Exercise 27.** Let A be a local ring and M a finitely generated A-module with minimal generating sets $\{f_1, \ldots, f_k\}$ and $\{g_1, \ldots, g_k\}$. Prove that $\operatorname{syz}(f_1, \ldots, f_k) \cong \operatorname{syz}(g_1, \ldots, g_k)$. **Exercise 28.** Let R a commutative ring with unit and let A_i, B_i for i = 1, ..., 5 be R-modules. Consider the following commutative diagram: Assume that the rows are exact, f_1 is an epimorphism, f_2 and f_4 are isomorphisms and that f_5 is a monomorphism. Show that f_3 is an isomorphism.