## Computer Algebra

Summer Term 2019 - Sheet 7

Due Date: Thursday, June 6, 2019, 10:00 am

Exercise 22. Show that the ring $\mathbb{Q}\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]$ is isomorphic to $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I$, where

$$
I=\left\langle x_{2} x_{3}-x_{1} x_{4}, x_{3}^{3}-x_{2} x_{4}^{2}, x_{2}-x_{1}^{2} x_{3}, x_{1} x_{3}^{2}-x_{2}^{2} x_{4}\right\rangle .
$$

Exercise 23. Consider the following system of equations over the complex numbers:

$$
\begin{align*}
& x+\frac{y}{z}=2  \tag{1}\\
& y+\frac{z}{x}=2  \tag{2}\\
& z+\frac{x}{y}=2 \tag{3}
\end{align*}
$$

Show that for any solution $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{C}^{3}$ it holds that either $x_{0}+y_{0}+z_{0}=3$ or $x_{0}+y_{0}+z_{0}=7$.

Exercise 24. Let $r \in \mathbb{N}_{\geq 1}$ and $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]^{r}$. We fix a global monomial ordering $>$.
(a) State an algorithm to compute a reduced normal form of an element $f \in K\left[x_{1}, \ldots, x_{n}\right]^{r}$ with respect to a finite set $G \subseteq K\left[x_{1}, \ldots, x_{n}\right]^{r} \backslash\{0\}$ and prove its correctness.
(b) Show that

$$
K\left[x_{1}, \ldots, x_{n}\right]^{r}=I \oplus\left(\bigoplus_{m \notin L(I)} K \cdot m\right) .
$$

Exercise 25. Write a SINGULAR procedure redBuchberger (ideal I) to compute the reduced Gröbner basis of a given ideal $I \unlhd K\left[x_{1}, \ldots, x_{n}\right]$ with respect to a global monomial ordering $>$ without the use of the commands std and groebner.

