

Computer Algebra

Summer Term 2019 - Sheet 6

Due Date: Wednesday, May 29, 2019, 10:00 am

Exercise 19 (Computing ideal quotients).

Let K be a field of characteristic 0 and let > be a monomial ordering on $Mon(x_1, \ldots, x_n)$. Consider the two ideals $\mathfrak{a}, \mathfrak{b} \leq K[x_1, \ldots, x_n]_>$ and assume that $\mathfrak{a} = \langle g_1, \ldots, g_r \rangle, \mathfrak{b} = \langle h_1, \ldots, h_s \rangle$, where $g_i, h_j \in K[x_1, \ldots, x_n]$. Define $h := h_1 + t \cdot h_2 + \ldots + t^{s-1}h_s \in K[t, x_1, \ldots, x_n]$. Prove that

 $\mathfrak{a}:\mathfrak{b}=\langle (\langle g_1,\ldots,g_r\rangle_{K[t,x_1,\ldots,x_n]}:h)\cap K[x_1,\ldots,x_n]\rangle_{K[x_1,\ldots,x_n]>}.$

Exercise 20 (Zariski closure of the image).

Consider $\varphi : \mathbb{Q}^2 \to \mathbb{Q}^4$, $(s,t) \mapsto (s^4, s^3t, st^3, t^4)$. Compute the Zariski closure of the image, $\overline{\varphi(\mathbb{Q}^2)}$, and decide whether $\varphi(\mathbb{Q}^2)$ coincides with its closure.

Let R be a commutative ring with unity. An ideal $Q \leq R$ is said to be **primary**, if $Q \neq R$ and if for all $x, y \in R$ we have that $xy \in Q$ implies $x \in Q$ or $y^n \in Q$ for some $n \in \mathbb{N}_{\geq 1}$.

Exercise 21. Let R be a commutative ring with unity, $S \subseteq R$ a multiplicative set and $Q \leq R$ a primary ideal. Denote by $j: R \to S^{-1}R$ the canonical morphism. Show:

- (a) If $S \cap Q \neq \emptyset$, then $S^{-1}Q = S^{-1}R$.
- (b) If $S \cap Q = \emptyset$, then $S^{-1}Q$ is a primary ideal of $S^{-1}R$ and $j^{-1}(S^{-1}Q) = Q$.
- (c) If $I \leq R$ can be written as $I = \bigcap_{i=1}^{n} Q_i$, where the Q_i are primary ideals of R with $S \cap Q_j = \emptyset$ for $j = 1, \ldots, m \leq n$ and $S \cap Q_j \neq \emptyset$ for $j = m + 1, \ldots, n$, then the following hold:
 - (i) $S^{-1}I = \bigcap_{i=1}^{m} S^{-1}Q_i$, and
 - (ii) $j^{-1}(S^{-1}I) = \bigcap_{i=1}^{m}Q_i.$

Hint: You may use that localization commutes with finite intersections.