Computer Algebra

Summer Term 2019 - Sheet 5
Due Date: Thursday, May 23, 2019, 10:00 am

Exercise 15. Check by hand whether the following inclusions are correct:
(a) $x y^{3}-z^{2}+y^{5}-z^{3} \in\left\langle-x^{3}+y, x^{2} y-z\right\rangle \unlhd \mathbb{Q}[x, y, z]$
(b) $x^{3} z-2 y^{2} \in\left\langle y z-y, x y+2 z^{2}, y-z\right\rangle \unlhd \mathbb{Q}[x, y, z]$
(c) $x^{3} z-2 y^{2} \in\left\langle y z-y, x y+2 z^{2}, y-z\right\rangle \unlhd \mathbb{Q}[x, y, z]_{\langle x, y, z\rangle}$

Exercise 16. Let $>$ be a global monomial ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$, let $I \unlhd K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let G be a standard basis of I with repsect to $>$. Show that the following are equivalent:
(a) $\operatorname{dim}_{K} K\left[x_{1}, \ldots, x_{n}\right] / I<\infty$,
(b) for all $i=1, \ldots, n$ there exists an $l \in \mathbb{N}$ such that $x_{i}^{l}=\mathrm{LM}_{>}(g)$ for a $g \in G$.

Exercise 17.

(a) Let $0 \neq I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let $>$ denote the negative lexicographical ordering ls.
(i) Does the highest corner $\mathrm{HC}(I)$ always exist?
(ii) Assume that $x^{\alpha}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the highest corner of I. Show that, for $i=1, \ldots, n$,

$$
\alpha_{i}=\max \left\{p \mid x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{p} \notin L(I)\right\} .
$$

(b) Compute the highest corner of $I=\left\langle x^{2}+x^{2} y, y^{3}+x y^{3}, z^{3}-x z^{3}\right\rangle$ with respect to the orderings 1 s and ds by hand.

Exercise 18. Write a SINGULAR procedure redNF (poly f, list G) to compute the reduced normal form of a given polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ with respect to a given finite list of polynomials $G \subseteq$ $K\left[x_{1}, \ldots, x_{n}\right]$ and a global monomial ordering $>$ without the use of the commands reduce and NF.

