

Computer Algebra

Summer Term 2019 - Sheet 5

Due Date: Thursday, May 23, 2019, 10:00 am

Exercise 15. Check by hand whether the following inclusions are correct:

(a) $xy^3 - z^2 + y^5 - z^3 \in \langle -x^3 + y, x^2y - z \rangle \leq \mathbb{Q}[x, y, z]$ (b) $x^3z - 2y^2 \in \langle yz - y, xy + 2z^2, y - z \rangle \leq \mathbb{Q}[x, y, z]$ (c) $x^3z - 2y^2 \in \langle yz - y, xy + 2z^2, y - z \rangle \leq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$

Exercise 16. Let > be a global monomial ordering on $Mon(x_1, \ldots, x_n)$, let $I \leq K[x_1, \ldots, x_n]$ be an ideal, and let G be a standard basis of I with repsect to >. Show that the following are equivalent:

- (a) $\dim_K K[x_1,\ldots,x_n]/I < \infty$,
- (b) for all i = 1, ..., n there exists an $l \in \mathbb{N}$ such that $x_i^l = \mathrm{LM}_{>}(g)$ for a $g \in G$.

Exercise 17.

- (a) Let $0 \neq I \subseteq K[x_1, \ldots, x_n]$ be an ideal, and let > denote the negative lexicographical ordering ls.
 - (i) Does the highest corner HC(I) always exist?
 - (ii) Assume that x^{α} , $\alpha = (\alpha_1, \ldots, \alpha_n)$ is the highest corner of *I*. Show that, for $i = 1, \ldots, n$,

 $\alpha_i = \max\{p \mid x_1^{\alpha_1} \cdots x_{i-1}^{\alpha_{i-1}} x_i^p \notin L(I)\}.$

(b) Compute the highest corner of $I = \langle x^2 + x^2y, y^3 + xy^3, z^3 - xz^3 \rangle$ with respect to the orderings ls and ds by hand.

Exercise 18. Write a SINGULAR procedure redNF(poly f, list G) to compute the reduced normal form of a given polynomial $f \in K[x_1, \ldots, x_n]$ with respect to a given finite list of polynomials $G \subseteq K[x_1, \ldots, x_n]$ and a global monomial ordering > without the use of the commands reduce and NF.