

## Computer Algebra

Summer Term 2019 - Sheet 3

Due Date: Thursday, May 09, 2019, 10:00 am

**Exercise 8.** Let > be an ordering on  $Mon(x_1, \ldots, x_n)$  and  $\mathfrak{p} \leq K[x_1, \ldots, x_n]$  a prime ideal such that  $K[x_1, \ldots, x_n]_> = K[x_1, \ldots, x_n]_\mathfrak{p}$ . Prove that  $\mathfrak{p}$  is a monomial ideal, i.e. that it can be generated by monomials.

**Exercise 9.** For a polynomial  $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} \cdot x_1^{\alpha_1} \dots x_n^{\alpha_n} \in K[x_1, \dots, x_n]$  and for an ideal  $I \trianglelefteq K[x_1, \dots, x_n]$  we define their homogenizations as

$$\begin{aligned}
f^h &:= \sum_{\alpha \in \mathbb{N}^n} c_\alpha \cdot x_0^{\deg(f) - |\alpha|} x_1^{\alpha_1} \dots x_n^{\alpha_n} \in K[x_0, \dots, x_n], \\
I^h &:= \langle f^h \mid f \in I \rangle \trianglelefteq K[x_0, \dots, x_n].
\end{aligned}$$

For an ordering > on  $Mon(x_1, \ldots, x_n)$  defined by a matrix  $A \in GL(n, \mathbb{Q})$  let  $>_h$  be the ordering on  $Mon(x_0, \ldots, x_n)$  defined by the matrix

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & & & \\ \vdots & A & \\ 0 & & & \end{pmatrix}.$$

Now let  $\{G_1, \ldots, G_k\}$  be a homogeneous (i.e. each  $G_i$  only has terms of a fixed degree) standard basis of  $I^h \leq K[x_0, \ldots, x_n]$  with respect to  $>_h$ . Prove that  $\{G_1|_{x_0=1}, \ldots, G_k|_{x_0=1}\}$  is a standard basis for I with respect to >.

**Exercise 10.** Let > be a global degree ordering on  $Mon(x_1, \ldots, x_n)$ , and let  $\{g_1, \ldots, g_k\}$  be a Gröbner basis of the ideal  $I \leq K[x_1, \ldots, x_n]$  with respect to >. Prove that  $I^h = \langle g_1^h, \ldots, g_k^h \rangle$ .

**Exercise 11.** Write a SINGULAR procedure powSeriesInv(poly f, int n) that, having as input a polynomial  $f \in K[x]$  over a field K, and an integer  $n \in \mathbb{N}$ , returns the power series expansion of the inverse of f up to terms of degree n if f is a unit in  $K[x]_>$  (where > is the monomial ordering of the basering K[x]) and 0 if f is not a unit.