

Computer Algebra

Summer Term 2019 - Sheet 2

Due Date: Thursday, May 02, 2019, 10:00 am

Exercise 5. Let $R = K[[x_1, \ldots, x_n]]$ be a power series ring over a field K and < a monomial ordering on $Mon_n := \{x^{\alpha} \mid \alpha \in \mathbb{N}^n\}$. Similarly to the case of polynomial rings, one would like to define the leading monomial LM(f) of any power series $0 \neq f = \sum_{\alpha} a_{\alpha} x^{\alpha} \in R$ by

 $LM(f) := \max\{x^{\alpha} \mid a_{\alpha} \neq 0\}.$

When is this definition well-defined? Prove your claim!

Exercise 6. Let n > 1 and let $w_1, \ldots, w_n \in \mathbb{R}$ be linearly independent over \mathbb{Q} . Define > on Mon_n by setting $x^{\alpha} < x^{\beta}$ if $\sum_{i=1}^{n} w_i \alpha_i < \sum_{i=1}^{n} w_i \beta_i$.

- (a) Prove that > is a monomial ordering.
- (b) Show that there is no matrix $A \in GL(n, \mathbb{Q})$ defining this ordering.

Exercise 7.

- (a) Consider a matrix ordering >_A on Mon_n for some matrix A ∈ GL(n, Q). Let M ⊆ Mon_n be a finite set. Determine a weight vector w ∈ Zⁿ which induces >_A on M. *Hint: Use the fact that x^α >_A x^β if and only if Aα >_{lex} Aβ and Example 1.2.12.*
- (b) Determine integer weight vectors which induce dp, respectively ds, on M := {x₁ⁱx₂^jx₃^k | 1 ≤ i, j, k ≤ 5} ⊆ Mon₃.