

## Computer Algebra

Summer Term 2019 - Sheet 11

Due Date: Thursday, July 4, 2019, 10:00 am

A goal of this exercise sheet is to compute and work with the so called Ext-functor. It is defined as follows:

Let R be a commutative ring with unity and let M, N be R-modules. Assume N has a free resolution

$$. \longrightarrow F_{i+1} \xrightarrow{\varphi_{i+1}} F_i \xrightarrow{\varphi_i} \dots \xrightarrow{\varphi_1} F_0 \longrightarrow N \longrightarrow 0$$

and M has a free presentation

$$G_1 \xrightarrow{\psi} G_0 \xrightarrow{\pi} M \longrightarrow 0$$
.

We apply Hom(-, M) to the free presentation of N and obtain the complex

$$0 \longrightarrow \operatorname{Hom}(N, M) \xrightarrow{\operatorname{Hom}(\varphi_0, 1_M)} \dots \xrightarrow{\operatorname{Hom}(\varphi_i, 1_M)} \operatorname{Hom}(F_i, M) \xrightarrow{\operatorname{Hom}(\varphi_{i+1}, 1_M)} \dots$$

Then we can define

$$\operatorname{Ext}_{R}^{0}(N,M) := \operatorname{Hom}(N,M) \text{ and } \operatorname{Ext}_{R}^{i}(N,M) := \operatorname{Ker}\left(\operatorname{Hom}(\varphi_{i+1},1_{M})\right) / \operatorname{Im}\left(\operatorname{Hom}(\varphi_{i},1_{M})\right)$$

One can show, that the Ext-functor is independent of the free resolution of N.

**Exercise 36.** We keep the setup as above. Consider the following commutative diagram with exact columns and exact second and third rows:

Prove that for  $i \ge 1$ :

 $\operatorname{Ext}_{R}^{i}(N,M) \cong \operatorname{Hom}(\varphi_{i+1},\operatorname{id}_{G_{0}})^{-1} \left( \operatorname{Im} \left( \operatorname{Hom}(\operatorname{id}_{F_{i+1}},\psi) \right) \right) / \left( \operatorname{Im} \left( \operatorname{Hom}(\operatorname{id}_{F_{i}},\psi) \right) + \operatorname{Im} \left( \operatorname{Hom}(\varphi_{i},\operatorname{id}_{G_{0}}) \right) \right).$ *Hint:* Have a look at the proof of Proposition 7.1.3 in the book by Greuel and Pfister.

**Exercise 37.** We keep the setup and notation as before. State an algorithm similar to Example 7.1.5 in the book by Greuel and Pfister to compute  $\operatorname{Ext}_{R}^{i}(N, M)$  for  $i \geq 1$  and prove its correctness. *Hint:* For commands regarding the computation of Hom maps, see Example 2.1.26 in the book by Greuel and Pfister.

Exercise 38. Prove the following:

- (a) There exist modules N and M, such that  $\operatorname{Ext}^{i}_{R}(N,M) \neq \operatorname{Ext}^{i}_{R}(M,N)$ .
- (b) If N is a free module, then  $\operatorname{Ext}_{R}^{i}(N, M) = 0$  for all  $i \geq 1$ .
- (c) If R is a principal ideal domain, then  $\operatorname{Ext}^i_R(N,M)=0$  for all  $i\geq 2.$

**Exercise 39.** Let R be a Noetherian commutative ring with unity and  $M \neq \{0\}$  a finitely generated R-module. Recall that  $P \in Ass(M)$  if and only if there exists an  $m \in M$ , such that  $P = 0 : \langle m \rangle = Ann(m)$ . Prove the following:

- (a)  $M^{\text{reg}} = \{r \in R \mid r \cdot m \neq 0 \text{ for all } m \in M \setminus \{0\}\} = R \setminus \bigcup_{P \in \text{Ass}(M)} P.$
- (b) There exists a chain of submodules

$$M = M_0 \supseteq M_1 \supseteq \ldots \supseteq M_{n-1} \supseteq M_n = 0,$$

and prime ideals  $P_0, \ldots, P_{n-1} \in \text{Spec}(R)$ , such that

$$M_i/M_{i+1} = R/P_i$$

for i = 0, ..., n - 1.

*Hint for (b):* Choose a  $P \in Ass(M)$  and let  $P = 0 : \langle m \rangle$ . If  $M = \langle m \rangle$  then  $M \cong R/P$ , otherwise continue with  $M/\langle m \rangle$ .