

Prof. Dr. M. Schulze und Raul Epure

Wintersemester 2018/2019

Grundlagen der Mathematik II Blatt 25

Abgabetermin: Freitag, 25.01.2019, 10:00 Uhr

Aufgabe 97. Seien $A, B \in \text{Mat}(n \times n, \mathbb{R})$. Beweisen oder widerlegen Sie: A und B sind ähnlich zueinander genau dann wenn $\text{rk}(A) = \text{rk}(B), \chi_A = \chi_B$ und $p_A = p_B$ gilt.

Aufgabe 98. Untersuchen Sie, welche der folgenden Mengen messbar sind. Bestimmen Sie ggf. das Volumen.

- (a) $A := \{(x, y) \in \mathbb{Q} \times \mathbb{R} \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$.
- (b) $B := \{(x, y) \in \mathbb{Q} \times \mathbb{R} \mid x^2 + y^2 \le 1\} \subset \mathbb{R}^2$.
- (c) $C := \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 \le 1\} \subset \mathbb{R}^2$.
- (d) $D \times N \subset \mathbb{R}^{n+m}$ für eine beschränkte Menge $D \subset \mathbb{R}^n$ und eine Nullmenge $N \subset \mathbb{R}^m$.

Aufgabe 99. Sei $(r_n)_{n\in\mathbb{N}}$ eine streng monoton fallende Folge positiver reeller Zahlen. Zeigen Sie, dass $M := \{x \in \mathbb{R}^2 \mid ||x||_2 = r_n \text{ für ein } n \in \mathbb{N}\} \subset \mathbb{R}^2 \text{ eine Nullmenge ist.}$

Aufgabe 100. Aus Beispiel 2.30 (a) wissen wir, dass die Menge $\mathbb{Q} \cap [0,1]$ abzählbar ist. Sei nun $(q_n)_{n \in \mathbb{N}}$ eine solche Abzählung. Wir definieren

$$D := \bigcup_{n \in \mathbb{N}} \left(q_n - \frac{1}{2^{n+3}}, q_n + \frac{1}{2^{n+3}} \right) \subset \mathbb{R}.$$

Zeigen Sie:

- (a) D ist offen, jedoch gilt $[0,1] \nsubseteq D$.
- (b) D ist nicht messbar.
- (c) Es gibt eine nicht-messbare kompakte Menge $K \subset \mathbb{R}$.