

Prof. Dr. M. Schulze und Raul Epure

Wintersemester 2018/2019

# Grundlagen der Mathematik II Blatt 22

Abgabetermin: Freitag, 04.01.2019, 10:00 Uhr

## Aufgabe 85. Sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (x_1, x_2) \mapsto \begin{cases} \frac{x_1^3}{x_1^2 + x_2^2} & \text{falls } (x_1, x_2) \neq 0, \\ 0 & \text{sonst.} \end{cases}$$

und

$$g: \mathbb{R}^2 \to \mathbb{R}, \ (x_1, x_2) \mapsto \begin{cases} (x_1^2 + x_2^2) \sin\left(\frac{1}{\sqrt{x_1^2 + x_2^2}}\right) & \text{falls } (x_1, x_2) \neq 0, \\ 0 & \text{sonst.} \end{cases}$$

Zeigen Sie:

- (a) f besitzt für alle  $v = (v_1, v_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$  eine Richtungsableitung  $\partial_v f$  in x = (0, 0).
- (b) f ist nicht total differenzierbar in x = (0,0).
- (c) g ist auf  $\mathbb{R}^2$  total differenzierbar.
- (d) g ist auf  $\mathbb{R}^2$  nicht stetig differenzierbar.

#### Aufgabe 86. Sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (x_1, x_2) \mapsto \begin{cases} \frac{x_1^3 x_2 - x_1 x_2^3}{x_1^2 + x_2^2} & \text{falls } (x_1, x_2) \neq 0, \\ 0 & \text{sonst.} \end{cases}$$

Zeigen Sie, dass f auf  $\mathbb{R}^2$  zweimal partiell differenzierbar ist, jedoch  $\partial_1 \partial_2 f(0,0) \neq \partial_2 \partial_1 f(0,0)$ .

# Aufgabe 87.

- (a) Sei  $f: \mathbb{R}^2 \to \mathbb{R}$ ,  $(x_1, x_2) \mapsto x_1 \exp(x_1^2 + x_2^2)$ . Bestimmen Sie ohne technische Hilfsmittel  $\partial_1^{2019} \partial_2^{2018} f(0, 0)$ .
- (b) Sei  $g: \mathbb{R}^2 \to \mathbb{R}$ ,  $(x_1, x_2) \mapsto (x_2 x_1^2)(x_2 2x_1^2)$ . Zeigen Sie, dass g kein lokales Extremum besitzt, jedoch ein lokales Minimum in (0,0) existiert, wenn man g auf eine beliebige Ursprungsgerade einschränkt.

### Aufgabe 88. Zeigen Sie:

- (a) Ist  $f: \mathbb{R}^n \to \mathbb{R}^n$  in x = 0 total difference and ist  $f(\lambda x) = \lambda f(x)$  für alle  $\lambda \in \mathbb{R}$  und  $x \in \mathbb{R}^n$ , so ist f eine lineare Abbildung.
- (b) Sind  $f: \mathbb{R}^n \to \mathbb{R}^n$  und  $g: \mathbb{R}^n \to \mathbb{R}$  total differenzierbar mit  $g \circ f$  konstant und  $g'(y) \neq 0$  für alle  $y \in \mathbb{R}^n$ , so ist  $\det(f'(x)) = 0$  für alle  $x \in \mathbb{R}^n$ .

