Prof. Dr. M. Schulze und Raul Epure

Wintersemester 2018/2019

Grundlagen der Mathematik II Blatt 19

Abgabetermin: Freitag, 30.11.2018, 10:00 Uhr

Aufgabe 73. Zeigen Sie:

(a) Ist $A \in O(3)$, so gibt es ein $\varphi \in \mathbb{R}$ und $T \in O(3)$ mit

$$T^{-1}AT = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix} \text{ oder } T^{-1}AT = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos(\varphi) & \sin(\varphi) \\ 0 & \sin(\varphi) & -\cos(\varphi) \end{pmatrix}$$

(b) Ist $A \in O(4)$, so gibt es im Allgemeinen kein $\varphi \in \mathbb{R}$ und $T \in O(4)$, sodass

$$T^{-1}AT = \begin{pmatrix} \pm 1 & 0 & 0 & 0 \\ 0 & \pm 1 & 0 & 0 \\ 0 & 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix} \text{ oder } T^{-1}AT = \begin{pmatrix} \pm 1 & 0 & 0 & 0 \\ 0 & \pm 1 & 0 & 0 \\ 0 & 0 & \cos(\varphi) & \sin(\varphi) \\ 0 & 0 & \sin(\varphi) & -\cos(\varphi) \end{pmatrix}.$$

Aufgabe 74. Sei $V \neq 0$ ein endlich-dimensionaler unitärer komplexer Vektorraum und $f \in \operatorname{End}(V)$ so, dass es ein $m \in \mathbb{N}_{>0}$ gibt mit $f^m = \operatorname{id}_V$. Zeigen Sie, dass dann die folgenden Aussagen äquivalent sind:

- (a) f ist unitär.
- (b) f ist normal.
- (c) Für Eigenwerte $\lambda \neq \mu$ von f gilt $\operatorname{Eig}(f,\lambda) \perp \operatorname{Eig}(f,\mu)$.

Aufgabe 75. Sei $V = \mathbb{R}^n$ für ein $n \in \mathbb{N}_{>0}$ und $f \in \text{End}(V)$. Zeigen Sie:

- (a) Ist f selbstadjungiert und existiert ein $m \in \mathbb{N}_{>0}$ mit $f^m = 0$, so ist f = 0.
- (b) Ist f diagonalisierbar und $f^* = -f$, so ist f = 0.

Aufgabe 76. Sei $A = (a_{ij}) \in \operatorname{Mat}(n \times n, \mathbb{R})$ eine symmetrische Matrix mit

$$a_{ii} > \sum_{i \neq j} |a_{ij}|$$

für alle i = 1, ..., n. Zeigen Sie, dass A dann positiv definit ist.