Prof. Dr. M. Schulze und R. Epure

Sommersemester 2018

Grundlagen der Mathematik I Blatt 7

Abgabetermin: Montag, 04.06.2018, 10:00 Uhr

Aufgabe 27.

(a) Sei $\emptyset \neq D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Wir definieren die Funktionen $f_+, f_-: D \to \mathbb{R}$ durch:

$$f_+(x) := \max(f(x), 0)$$
 für alle $x \in D$,

$$f_{-}(x) := \max(-f(x), 0)$$
 für alle $x \in D$.

Zeigen Sie:

- i) $f = f_+ f_-$ und $|f| = f_+ + f_-$.
- ii) f ist genau dann stetig, wenn f_+ und f_- stetig sind.
- (b) Zeigen Sie, dass $g: \mathbb{R}_{\geq 0} \to \mathbb{R}, \ x \mapsto \sqrt{x}$ gleichmäßig stetig ist.

Hinweis zu (b): Betrachten Sie g zunächst auf dem Intervall [0,1] und dann auf dem Intervall $[1,\infty)$.

Aufgabe 28.

(a) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig mit

$$|f(x) - f(y)| \le L \cdot |x - y|,$$

für beliebige $x, y \in \mathbb{R}$ mit $x \neq y$ und ein $L \in \mathbb{R}_{\geq 0}$. Zeigen Sie, dass f dann gleichmäßig stetig ist.

(b) Sei $c \in \mathbb{R}$ fest und $g : \mathbb{R} \to \mathbb{R}$ eine stetige Funktion mit $\lim_{x \to \infty} g(x) = \lim_{x \to -\infty} g(x) = c$. Zeigen Sie, dass g beschränkt ist.

Aufgabe 29. Seien im folgenden $f: D \to \mathbb{R}$ eine Funktion und $f_n: D \to \mathbb{R}$ eine Funktionenfolge, wobei $\emptyset \neq D \subset \mathbb{R}$.

(a) Wir definieren für eine reelle Funktion

$$||f||_{\infty} := \sup(\{|f(x)| : x \in D\}) \in \mathbb{R}_{>0} \cup \{\infty\}.$$

Zeigen Sie, dass f_n genau dann gleichmäßig gegen f konvergiert, wenn $\lim_{n\to\infty} \|f-f_n\|_{\infty} = 0$.

(b) Zeigen Sie mit Hilfe von (a), dass

$$f_n:[c,\infty)\to\mathbb{R},\ x\mapsto\frac{1}{1+nx^2}$$

für alle $c \in \mathbb{R}_{>0}$ gleichmäßig konvergent ist. Gilt dies auch für c = 0?

Aufgabe 30. Seien $a, b \in \mathbb{R}$ mit a < b. Weiterhin sei $f : [a, b] \to [a, b]$ eine Abbildung mit

$$|f(x) - f(y)| < L \cdot |x - y|,$$

für ein $L \in (0,1)$ und für alle $x,y \in [a,b]$ mit $x \neq y$. Sei $x_0 \in [a,b]$ beliebig. Wir definieren die Folge $x_{n+1} = f(x_n)$ für $n \in \mathbb{N}$.

- (a) Zeigen Sie, dass $|x_{n+1} x_n| < L^n |x_1 x_0|$, falls $x_1 \neq x_0$ und $n \geq 1$.
- (b) Zeigen Sie, dass (x_n) unabhängig von der Wahl von x_0 konvergiert.
- (c) Zeigen Sie, dass f einen Fixpunkt besitzt, d.h. es gibt ein $\bar{x} \in [a, b]$ mit $f(\bar{x}) = \bar{x}$.
- (d) Ist der Fixpunkt in (c) eindeutig bestimmt? Beweisen Sie ihre Vermutung.

Hinweis zu (b): Zeigen Sie, dass (x_n) eine Cauchy-Folge ist.

Wir laden alle Studierenden zum kommenden **Tag der Mathematik** am 9. Juni 2018 ein. Neben spannenden Mathematikvorträgen berichten auch 4 Absolventen/innen unseres Fachbereichs über ihren beruflichen Werdegang. Weitere Informationen finden sich unter:

 $\verb|http://www.mathematik.uni-kl.de/tdm|$