

Prof. Dr. M. Schulze und R. Epure

Grundlagen der Mathematik I Blatt 4

Abgabetermin: Montag, 14.05.2018, 10:00 Uhr

Aufgabe 15. Bestimmen Sie Real-, Imaginärteil und Betrag folgender komplexer Zahlen:

- (a) $\frac{2+i}{5i-3}$.
- (b) $\frac{1}{(5+i)^2}$.
- (c) $\left(\frac{-1+i\sqrt{3}}{2}\right)^2$.
- (d) i^n für $n \in \mathbb{N}$.

Aufgabe 16. Sei $f: \mathbb{C} \setminus \{5i\} \to \mathbb{C} \setminus \{1\}$ mit $z \mapsto \frac{z+i}{z-5i}$ gegeben.

- (a) Zeigen Sie, dass f bijektiv ist und geben sie f^{-1} an.
- (b) Ersetzen Sie das Symbol \square durch eines der Symbole $\subset,\supset,=$ so, dass die folgende Aussage wahr wird:

$$f^{-1}(\{z \in \mathbb{C} : |z| = 1\}) \square \mathbb{R}.$$

Beweisen Sie Ihre Behauptung!

Aufgabe 17.

- (a) Untersuchen Sie mit Hilfe von Definition 6.1 (b) die folgenden reellen Zahlenfolgen auf Konvergenz:
 - i) $a_n = \frac{5n^2 1}{n^2 + 1}$.
 - ii) $b_n = \frac{(-1)^n \cdot n}{n+1}$.

Geben Sie im Falle der Konvergenz zu jedem $\varepsilon > 0$ explizit ein $n_0 \in \mathbb{N}$ wie in der Definition an.

(b) Sei (z_n) eine Folge komplexer Zahlen. Zeigen Sie, dass (z_n) genau dann gegen ein $z \in \mathbb{C}$ konvergiert, wenn die reellen Folgen (Re z_n) und (Im z_n) gegen Re z bzw. Im z konvergieren.

Aufgabe 18. Seien (a_n) und (b_n) zwei reelle Zahlenfolgen.

- (a) Zeigen Sie: Gilt $a_n \to a \in \mathbb{R}_{>0}$ und $b_n \to \infty$, so gilt auch $a_n \cdot b_n \to \infty$.
- (b) Zeigen Sie: Gilt $a_n \to \infty$ und $b_n \to \infty$, so gilt auch $a_n + b_n \to \infty$.
- (c) Kann in (b) die Bedingung " $\rightarrow \infty$ " durch "nach oben unbeschränkt" ersetzt werden, d.h. ist die Summe nach oben unbeschränkter Folgen nach oben unbeschränkt?