

Commutative Algebra

Winter Semester 2016 - Problem Set 6 Due December 9, 2016, 1 p.m.

Problem 1: An R-module M is called *semisimple* if it satisfies the following equivalent conditions:

- (i) M is a sum of simple modules.
- (ii) M is a direct sum of simple modules.
- (iii) For every submodule $N \leq M$ there is a module P such that $M = N \oplus P$.
- (a) Show that condition (i) implies condition (ii). Hint: Assume $M = \sum_{i \in I} M_i$. Use Zorn's lemma to find a maximal $J \subseteq I$ such that $\sum_{j \in J} M_j = \bigoplus_{j \in J} M_j$.
- (b) Let M and N be R-modules. Show that if M or N is semisimple, then $M \otimes_R N$ is semisimple. Is the converse also true? Hint: Reduce to the case M simple and show that in this case $M \otimes_R N$ is a semisimple vectorspace.

Problem 2: Let M be an R-module. Show:

- (a) The following are equivalent:
 - (i) M is noetherian.
 - (ii) Every non-empty set of submodules of M has a maximal element (with respect to inclusion).
 - (iii) Every non-empty set of finitely generated submodules of M has a maximal element.

If we replace "noetherian" by "artinian" and "maximal" by "minimal" which of the above statements are still equivalent?

(b) If $N_1, N_2 \leq M$ are submodules such that M/N_1 and M/N_2 are noetherian/artinian, then $M/(N_1 \cap N_2)$ is noetherian/artinian.

Problem 3: Let M be an artinian R-module and $\varphi: M \to M$ an R-module homomorphism. Show that φ is an isomorphism if it is injective.

Hint: Consider the morphisms φ^n for $n \in \mathbb{N}$.

Problem 4: Let M be a noetherian R-module and let $I = \operatorname{ann}_R(M)$. Prove that R/I is a noetherian ring. Is the result still true if we replace "noetherian" by "artinian"?

In-class Problem

- (a) Show that \mathbb{Q}/\mathbb{Z} is neither noetherian nor artinian as \mathbb{Z} -module.
- (b) Let $p \in \mathbb{P}$ and $G := \{q \in \mathbb{Q}/Z \mid \operatorname{ord}(q) = p^n \text{ for some } n \in \mathbb{N}\} \leq \mathbb{Q}/\mathbb{Z}$. Show that G is an artinian \mathbb{Z} -module, but not noetherian as a \mathbb{Z} -module.