

Commutative Algebra

Winter Semester 2016 - Problem Set 5

Due December 2, 2016, 1 p.m.

Problem 1:

- (a) Let K be a field, $R = K[x, y, z] / \langle xz, yz \rangle$ and $\mathfrak{p} = \langle \overline{x}, \overline{y}, \overline{z-1} \rangle \leq R$. Show that \mathfrak{p} is a prime ideal and that $R_{\mathfrak{p}} \cong K[z]_{\langle z-1 \rangle}$.
- (b) Let R be a ring and $f \in R$. Show that $R_f \cong R[x]/\langle fx 1 \rangle$.

Problem 2: Let R be a ring. Show:

- (a) Let $\varphi \in \text{Hom}(R, S)$, $U \subseteq R$ multiplicatively closed, N an S-module. Then $\varphi(U) \subseteq S$ is multiplicatively closed and $U^{-1}N \cong \varphi(U)^{-1}N$ as modules over $U^{-1}S \cong \varphi(U)^{-1}S$.
- (b) Let M and N be R-modules and $U \subseteq R$ multiplicatively closed. If M is finitely presented then

$$U^{-1} \operatorname{Hom}_R(M, N) \cong \operatorname{Hom}_{U^{-1}R}(U^{-1}M, U^{-1}N).$$

Problem 3: Let R be a ring and U a multiplicatively closed subset of R. Show:

- (a) For $I \leq R$, $U^{-1}\sqrt{I} = \sqrt{U^{-1}I}$.
- (b) $U^{-1}N(R) \cong N(U^{-1}R)$ and $U^{-1}(R^{\text{red}}) \cong (U^{-1}R)^{\text{red}}$.
- (c) "Being reduced" is a local property, i.e. the following are equivalent:
 - (i) R is reduced.
 - (ii) $R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
 - (iii) $R_{\mathfrak{m}}$ is reduced for all $\mathfrak{m} \in \operatorname{Max} \operatorname{Spec}(R)$.
- (d) "Being a domain" is not a local property.

Problem 4: Let U be a multiplicatively closed subset of a ring R. U is called *saturated* if

$$u \cdot u' \in U \Leftrightarrow u \in U \text{ and } u' \in U.$$

The set $\overline{U} := \{r \in R \mid r \cdot r' \in U \text{ for some } r' \in R\}$ is the *saturation* of U.

- (a) Show: $U^{-1}R \cong \overline{U}^{-1}R$.
- (b) Let V be a multiplicatively closed subset of R such that $U \subseteq V$. Show that the morphism $\varphi: U^{-1}R \to V^{-1}R: r/u \mapsto r/u$ is an isomorphism if and only if $V \subseteq \overline{U}$.
- (c) Let U' ⊆ R. Prove that U' is multiplicatively closed and saturated if and only if R \ U' is a (possibly empty) union of prime ideals. *Hint: For the "only if"-part use the localization map* R → U'⁻¹R to show that for each r ∈ R \ U' there exists a prime ideal p ∈ D_R(U') such that r ∈ p.
- (d) Let $I \leq R$ be an ideal. Determine $\overline{1+I}$, where $1+I := \{1+i \mid i \in I\}$.