

Commutative Algebra

Winter Semester 2016 - Problem Set 4

Due November 25, 2016, 1 p.m.

Problem 1: Let M, N and P be R-modules. Show that:

 $(M \otimes_R N) \otimes_R P \cong M \otimes_R (N \otimes_R P).$

Problem 2: Show: If M is a finitely presented R-module, N any R-module and P a flat R-module then there is an isomorphism of R-modules

 $\operatorname{Hom}_R(M,N)\otimes_R P\to \operatorname{Hom}_R(M,N\otimes_R P), \quad \varphi\otimes p\mapsto (m\mapsto\varphi(m)\otimes p).$

Hint: First construct the above map using the universal property of the tensor product. Then prove the claim in the case that M is a free R-module. Finally, apply the functors $\operatorname{Hom}_R(-, N) \otimes_R P$ and $\operatorname{Hom}_R(-, N \otimes_R P)$ to a finite presentation of M.

Problem 3: Let (R, \mathfrak{m}) be a local ring, and M and N be finitely generated R-modules. Show that $M \otimes_R N = 0$ if and only if M = 0 or N = 0. *Hint: Nakayama's lemma.*

Problem 4: Let *M* and *N* be *R*-modules, and suppose that $N = \langle n_{\lambda} \mid \lambda \in \Lambda \rangle$. Show:

- (a) $M \otimes_R N = \{\sum_{\lambda \in \Lambda} m_\lambda \otimes n_\lambda \mid m_\lambda \in M \text{ and } m_\lambda \neq 0 \text{ for only finitely many } \lambda \in \Lambda\}.$
- (b) Let $x = \sum_{\lambda \in \Lambda} m_{\lambda} \otimes n_{\lambda} \in M \otimes_R N$ with $m_{\lambda} \in M$ and $m_{\lambda} \neq 0$ for only finitely many $\lambda \in \Lambda$. Then x = 0 if and only if, for some index set Θ , there exist $m'_{\theta} \in M$ and $a_{\lambda,\theta} \in R$ for $\lambda \in \Lambda$ and $\theta \in \Theta$, such that
 - $m'_{\theta} \neq 0$ for only finitely many $\theta \in \Theta$,
 - $a_{\lambda,\theta} \neq 0$ for only fintely many $\lambda \in \Lambda$ for each fixed $\theta \in \Theta$,
 - $m_{\lambda} = \sum_{\theta \in \Theta} a_{\lambda,\theta} \cdot m'_{\theta}$ for all $\lambda \in \Lambda$,
 - $\sum_{\lambda \in \Lambda} a_{\lambda,\theta} \cdot n_{\lambda} = 0$ for all $\theta \in \Theta$.

Hint: First show that if $R^{(\Lambda)} \to N, e_{\lambda} \mapsto n_{\lambda}$ is an isomorphism, all m_{λ} are actually zero. Then consider a free presentation $R^{(\Theta)} \to R^{(\Lambda)} \to N \to 0$ of N and tensorize it with M.