

Commutative Algebra

Winter Semester 2016 - Problem Set 1 Due November 4, 2016, 1 p.m.

All rings are commutative with 1.

Problem 1: Let R be a ring and $I, J_1, \ldots, J_n \subseteq R$. Show that:

- (a) $I: (\sum_{i=1}^n J_i) = \bigcap_{i=1}^n (I:J_i)$.
- (b) $(\bigcap_{i=1}^{n} J_i) : I = \bigcap_{i=1}^{n} (J_i : I).$
- (c) $\sqrt{J_1 \cap \cdots \cap J_n} = \sqrt{J_1} \cap \cdots \cap \sqrt{J_n}$.
- (d) $\sqrt{J_1 + \dots + J_n} \supseteq \sqrt{J_1} + \dots + \sqrt{J_n}$.

Problem 2: Let R be a ring, $r \in R$ nilpotent and $u \in R$ a unit. Show that u + r is a unit.

Problem 3: Let R be a ring and $I \subseteq R$. The natural injection $R \hookrightarrow R[\underline{x}] := R[x_1, \dots, x_n], a \mapsto a$ is a ring homomorphism and thus makes $R[\underline{x}]$ into an R-algebra.

- (a) Show that $R[\underline{x}]$ satisfies the following universal property: If R' is any R-algebra and $a_1, \ldots, a_n \in R'$ are given, then there is a unique R-algebra homomorphism $\alpha : R[\underline{x}] \to R'$ such that $\alpha(x_i) = a_i$ for $i = 1, \ldots, n$. (I.e., an R-algebra homomorphism on $R[\underline{x}]$ may be uniquely defined by specifying the images of the x_i .)
- (b) Let $I \subseteq R[\underline{x}]$ be an ideal. Show that for any R-algebra A there is a canonical bijection

$$\operatorname{Hom}_{R}(R[x]/I, A) \to Z_{A}(I) := \{(a_{1}, \dots, a_{n}) \in A^{n} \mid f(a_{1}, \dots, a_{n}) = 0 \,\forall \, f \in I\}.$$

(What is the meaning of $f(a_1, \ldots, a_n)$ here?)

(c) Determine $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[x]/\langle x^2+1\rangle,\mathbb{Z})$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[x]/\langle x^2+1\rangle,\mathbb{C})$ explicitly.

Problem 4: Let R be a ring. Show that the following are equivalent:

- (a) R/N(R) is a field.
- (b) $|\operatorname{Spec}(R)| = 1$.
- (c) Every element of R is either a unit or nilpotent.

In-class Problem 5: Does the following equality hold in the polynomial ring $\mathbb{C}[x,y]$:

$$\left\langle x^3-x^2,x^2y-x^2,xy-y,y^2-y\right\rangle = \left\langle x^2,y\right\rangle \cap \left\langle x-1,y-1\right\rangle$$

In-class Problem 6: Determine $\operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[x,y]/\langle xy, x^2-x\rangle, \mathbb{C}[x,y]/\langle x^2-y^3\rangle).$