

Computer Algebra

Winter Semester 2015/16 - Problem Set 9
Due January 14, 2016, 10:00

Problem 1: Let A be a ring and M a module over A represented by $A^m \xrightarrow{\varphi} A^n \to M \to 0$. Given the canonical bases on A^n and A^m , let S be the matrix representing φ , and let $F_0^A(M)$ be the ideal in A generated by all $n \times n$ -minors of S.

Prove that $F_0^A(M) \subseteq \operatorname{Ann}_A(M)$ with $\sqrt{F_0^A(M)} = \sqrt{\operatorname{Ann}_A(M)}$. More precisely, if M can be generated by n elements, then show that $\operatorname{Ann}_A(M)^n \subseteq F_0^A(M)$. Finally, conclude that $\operatorname{Supp}(M) = V(F_0^A(M))$.

NOTE: You may use the fact that the definition of $F_0^A(M)$ neither depends on the choice of basis on basis on A^m , A^n , nor on choice of the representation φ . If you are interested, independence on the choice of basis is easily proven. To prove the independence on the choice of representation, restrict yourself to the case in which A is local with maximal ideal \mathfrak{m} , and that the image and kernel of your representations lie in the product of \mathfrak{m} and the respective module. Show that in this case is basically a base change. Given a general representation, try to construct another representation satisfying the condition of our restriction which has the same minors.

Problem 2: Let A be a ring. Prove that $\left(\bigcup_{\mathfrak{p}\in \mathrm{Ass}(A)}\mathfrak{p}\right)\setminus\{0\}$ is the set of zero-divisors of A. Moreover, if A is reduced, show that then $\left(\bigcup_{\mathfrak{p}\in \mathrm{Ass}(A)\text{ minimal }\mathfrak{p}}\right)\setminus\{0\}$ is already the set of zero-divisors of A.

Problem 3: Let $\psi: R \to S$ be a finite ring map. Find $k \in \mathbb{N}_{\geq 0}$ and $I \subseteq R[t_1, \dots, t_k]$ such that $S \cong R[t_1, \dots, t_k]/I$.