

## Computer Algebra

Winter Semester 2015 - Problem Set 5

Due December 3, 2015, 10:00

**Problem 1:** Check by hand whether the following inclusions are correct:

(a) 
$$xy^3 - z^2 + y^5 - z^3 \in \langle -x^3 + y, x^2y - z \rangle \triangleleft \mathbb{Q}[x, y, z]$$

(b) 
$$x^3z - 2y^2 \in \langle yz - y, xy + 2z^2, y - z \rangle \leq \mathbb{Q}[x, y, z]$$

(c) 
$$x^3z - 2y^2 \in \langle yz - y, xy + 2z^2, y - z \rangle \leq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$$

**Problem 2:** Let > be a global monomial ordering on  $\operatorname{Mon}(x_1, \ldots, x_n)$ , let  $I \leq K[x_1, \ldots, x_n]$  be an ideal, and let G be a standard basis of I with repsect to >. Show that the following are equivalent:

- (a)  $\dim_K K[x_1,\ldots,x_n]/I < \infty$ ,
- (b) for all i = 1, ..., n there exists an  $l \in \mathbb{N}$  such that  $x_i^l = \mathrm{LM}_{>}(g)$  for a  $g \in G$ .

## Problem 3:

- (a) Let  $0 \neq I \subseteq K[x_1, ..., x_n]$  be an ideal, and let > denote the negative lexicographical ordering 1s.
  - (i) Does the highest corner HC(I) always exist?
  - (ii) Assume that  $x^{\alpha}$ ,  $\alpha = (\alpha_1, \dots, \alpha_n)$  is the highest corner of I. Show that, for  $i = 1, \dots, n$ ,

$$\alpha_i = \max\{p \mid x_1^{\alpha_1} \cdots x_{i-1}^{\alpha_{i-1}} x_i^p \notin L(I)\}.$$

(b) Compute the highest corner of  $I=\langle x^2+x^2y,y^3+xy^3,z^3-xz^2\rangle$  with respect to the orderings 1s and ds by hand.

Problem 4: Implement an own Gröbner basis algorithm in SINGULAR.