

Computer Algebra

Winter Semester 2015 - Problem Set 4

Due November 26, 2015, 10:00

Problem 1:

- (a) Let > be any monomial ordering, $R = K[x_1, \dots, x_n]_>$, $I \subset R$ an ideal. Show that if I has a reduced standard basis, then it is unique.
- (b) Show that Remark 1.7.2 in the SINGULAR book is not correct.

Problem 2:

- (a) Show by example that reduced normal forms with respect to non-global orderings do in general not exist.
- (b) Let > be the ordering ds. Compute a standard representation of x_1 with respect to $\{x_1 x_2, x_2 x_1^2\}$ in $K[x_1, x_2]_{>}$.

Problem 3: (Product Criterion) Let > be a global monomial ordering on $\operatorname{Mon}(x_1, \ldots, x_n)$. Let $f, g \in K[x_1, \ldots, x_n]$ be polynomials such that $\operatorname{lcm}(\operatorname{LM}_{>}(f), \operatorname{LM}_{>}(g)) = \operatorname{LM}_{>}(f) \cdot \operatorname{LM}_{>}(g)$. Prove that

$$NF(\text{spoly}(f, g) | \{f, g\}) = 0.$$

Hint: Assume that $LC_{>}(f) = LC_{>}(g) = 1$ and claim that $spoly(f,g) = -tail(g) \cdot f + tail(f) \cdot g$ is a standard representation.

Problem 4: Write a SINGULAR procedure to compute the reduced normal form of a given polynomial $f \in K[x_1, \ldots, x_n]$ with respect to a given finite list of polynomials $G \subseteq K[x_1, \ldots, x_n]$ and a global monomial ordering > without the use of the commands reduce and NF.