Computer Algebra

Winter Semester 2015 - Problem Set 4

Due November 26, 2015, 10:00

Problem 1:

(a) Let $>$ be any monomial ordering, $R=K\left[x_{1}, \ldots, x_{n}\right]_{>}, I \subset R$ an ideal. Show that if I has a reduced standard basis, then it is unique.
(b) Show that Remark 1.7.2 in the Singular book is not correct.

Problem 2:

(a) Show by example that reduced normal forms with respect to non-global orderings do in general not exist.
(b) Let $>$ be the ordering ds. Compute a standard representation of x_{1} with respect to $\left\{x_{1}-x_{2}, x_{2}-x_{1}^{2}\right\}$ in $K\left[x_{1}, x_{2}\right]_{>}$.

Problem 3: (Product Criterion) Let $>$ be a global monomial ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$. Let $f, g \in K\left[x_{1}, \ldots, x_{n}\right]$ be polynomials such that $\operatorname{lcm}\left(\mathrm{LM}_{>}(f), \mathrm{LM}_{>}(g)\right)=\mathrm{LM}_{>}(f) \cdot \mathrm{LM}_{>}(g)$. Prove that

$$
\mathrm{NF}(\operatorname{spoly}(f, g) \mid\{f, g\})=0 .
$$

Hint: Assume that $\mathrm{LC}_{>}(f)=\mathrm{LC}_{>}(g)=1$ and claim that $\operatorname{spoly}(f, g)=-\operatorname{tail}(g) \cdot f+\operatorname{tail}(f) \cdot g$ is a standard representation.

Problem 4: Write a Singular procedure to compute the reduced normal form of a given polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ with respect to a given finite list of polynomials $G \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and a global monomial ordering $>$ without the use of the commands reduce and NF.

