

Computer Algebra

Winter Semester 2015 - Problem Set3

Due November 19, 2015, 10:00

Problem 1: Let > be an ordering on $Mon(x_1, \ldots, x_n)$ and $\mathfrak{p} \leq K[x_1, \ldots, x_n]$ a prime ideal such that $K[x_1, \ldots, x_n]_> = K[x_1, \ldots, x_n]_{\mathfrak{p}}$. Prove that \mathfrak{p} is a monomial ideal, i.e. that it can be generated by monomials.

Problem 2: For a polynomial $f = \sum_{\alpha \in \mathbb{N}^n} c_\alpha \cdot x_1^{\alpha_1} \dots x_n^{\alpha_n} \in K[x_1, \dots, x_n]$ and for an ideal $\mathfrak{a} \trianglelefteq K[x_1, \dots, x_n]$ we define their homogenizations as

$$f^{h} := \sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} \cdot x_{0}^{\deg(f) - |\alpha|} x_{1}^{\alpha_{1}} \dots x_{n}^{\alpha_{n}} \in K[x_{0}, \dots, x_{n}],$$
$$\mathfrak{a}^{h} := \langle f^{h} \mid f \in \mathfrak{a} \rangle \trianglelefteq K[x_{0}, \dots, x_{n}].$$

For an ordering > on Mon (x_1, \ldots, x_n) defined by a matrix $A \in GL(n, \mathbb{Q})$ let $>_h$ be the ordering on Mon (x_0, \ldots, x_n) defined by the matrix

$$\left(\begin{array}{cccc}1&1&\cdots&1\\0&&&\\\vdots&&A\\0&&&\end{array}\right).$$

Now let $\{G_1, \ldots, G_k\}$ be a homogeneous (i.e. each G_i only has terms of a fixed degree) standard basis of $\mathfrak{a}^h \leq K[x_0, \ldots, x_n]$ with respect to $>_h$. Prove that $\{G_1|_{x_0=1}, \ldots, G_k|_{x_0=1}\}$ is a standard basis for \mathfrak{a} with respect to >.

Problem 3 Let > be a global degree ordering on $Mon(x_1, \ldots, x_n)$, and let $\{g_1, \ldots, g_k\}$ be a Gröbner basis of the ideal $\mathfrak{a} \leq K[x_1, \ldots, x_n]$ with respect to >. Prove that $\mathfrak{a}^h = \langle g_1^h, \ldots, g_k^h \rangle$.

Problem 4: Write a SINGULAR procedure powSeriesInv(poly f, int n) that, having as input a polynomial $f \in K[x]$ over a field K, and an integer $n \in \mathbb{N}$, returns the power series expansion of the inverse of f up to terms of degree n if f is a unit in $K[x]_>$ (where > is the monomial ordering of the basering K[x]) and 0 if f is not a unit.