

## Computer Algebra

Winter Semester 2015 - Problem Set 2

Due November 12, 2015, 10:00 am

**Problem 1** (4 Points). Let  $R = K[[x_1, \ldots, x_n]]$  be a power series ring over a field K and < a monomial ordering on  $Mon_n := \{x^{\alpha} \mid \alpha \in \mathbb{N}^n\}$ . Similarly to the case of polynomial rings, one would like to define the leading monomial LM(f) of any power series  $0 \neq f = \sum_{\alpha} a_{\alpha} x^{\alpha} \in R$  by

 $LM(f) := \max\{x^{\alpha} \mid a_{\alpha} \neq 0\}.$ 

When is this definition well-defined?

**Problem 2** (4 Points). Let n > 1 and let  $w_1, \ldots, w_n \in \mathbb{R}$  be linearly independent over  $\mathbb{Q}$ . Define > on Mon<sub>n</sub> by setting  $x^{\alpha} < x^{\beta}$  if  $\sum_{i=1}^{n} w_i \alpha_i < \sum_{i=1}^{n} w_i \beta_i$ .

- (a) Prove that > is a monomial ordering.
- (b) Show that there is no matrix  $A \in \operatorname{GL}(n, \mathbb{Q})$  defining this ordering.

Problem 3 (4 Points).

- (a) Consider a matrix ordering  $>_A$  on  $\operatorname{Mon}_n$  for some matrix  $A \in \operatorname{GL}(n, \mathbb{Q})$ . Let  $M \subset \operatorname{Mon}_n$  be a finite set. Determine a weight vector  $w \in \mathbb{Z}^n$  which induces  $>_A$  on M. Hint: Use the fact that  $x^{\alpha} >_A x^{\beta}$  if and only if  $A^{\alpha} >_{lex} A^{\beta}$  and Example 1.2.12.
- (b) Determine integer weight vectors which induce dp, respectively ds, on  $M := \{x_1^i x_2^j x_3^k \mid 1 \le i, j, k \le 5\} \subset Mon_3$ .

**Problem 4** (4 Points). Write a SINGULAR procedure checkWeightVector(list M, intvec v), having a list M of monomials and an intvec v as input and returning 1 if v induces the monomial ordering of the basering on the set of monomials contained in M and O else.

Your procedure is supposed to work as follows: It creates a polynomial f, being the sum of all monomials contained in M, and converts f to a string. Then it does the same in other suitable rings (hint: extra weight vectors), and compares the respective strings.

Prove that your procedure is correct.