

Computer Algebra

Winter Semester 2015 - Problem Set 1

Due November 5, 2015, 10:00 am

Problem 1 (8 points). Let A be a ring and $f = \sum_{|\alpha| \ge 0} a_{\alpha} x^{\alpha} \in A[x_1, \ldots, x_n]$. Prove the following statements:

(a) f is nilpotent if and only if a_{α} is nilpotent for all α . In particular: $A[x_1, \ldots, x_n]$ is reduced if and only if A is reduced.

(Hint: Choose a monomial ordering and argue by induction on the number of summands).

- (b) f is a unit in $A[x_1, \ldots, x_n]$ if and only if $a_{(0,\ldots,0)}$ is a unit in A and a_α are nilpotent for $\alpha \neq (0,\ldots,0)$. In particular: $(A[x_1,\ldots,x_n])^* = A^*$ if and only if A is reduced. (Hint: First prove the following statement using a geometric series: If $a \in A[x_1,\ldots,x_n]$ is a unit and $b \in A[x_1,\ldots,x_n]$ is nilpotent, then a + b is a unit. Deduce the "if"-part from this statement. For the "only if"-part, use this statement and induction on the leading monomial
- (c) f is a zero-divisor in $A[x_1, \ldots, x_n]$ if and only if there exisits some $a \neq 0$ in A such that af = 0. In particular: $A[x_1, \ldots, x_n]$ is an integral domain if and only if A is an integral domain. (Hint: Choose a monomial ordering and $g \in A[x_1, \ldots, x_n]$ with minimal number of terms, so that fg = 0. Conclude that g must be monomial.)
- (d) $A[x_1, \ldots, x_n]$ is an integral domain if and only if $\deg(fg) = \deg(f) + \deg(g)$ for all $f, g \in A[x_1, \ldots, x_n]$.

Problem 2 (4 points). Monomial orderings arise in a variety of ways. One possibility is to use matrices to define monomial orderings: The matrix $A \in GL(n, \mathbb{R})$ defines a monomial ordering $>_A$ on $Mon(x_1, \ldots, x_n)$ by setting

$$x^{\alpha} >_A x^{\beta} :\Leftrightarrow A\alpha > A\beta,$$

where > on the right-hand side is the lexicographical ordering on \mathbb{R}^n .

of f with respect to a monomial well-ordering.)

One can also define new monomial orderings from "known" orderings using so-called product orderings: Consider a monomial ordering $>_1$ on $Mon(x_1, \ldots, x_{n_1})$ and a monomial ordering $>_2$ on $Mon(y_1, \ldots, y_{n_2})$. Then the product ordering or block ordering >, also denoted by $(>_1, >_2)$, on $Mon(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})$, is defined as

$$x^{\alpha}y^{\beta} > x^{\alpha'}y^{\beta'} :\Leftrightarrow x^{\alpha} >_1 x^{\alpha'} \text{ or } \left(x^{\alpha} = x^{\alpha'} \text{ and } y^{\beta} >_2 y^{\beta'}\right).$$

Given a vector $w = (w_1, \ldots, x_n)$ of integers, we define the weighted degree of x^{α} by

$$w$$
-deg $(x^{\alpha}) := \langle w, \alpha \rangle := w_1 \alpha_1 + \dots + w_n \alpha_n,$

that is, the variable x_i has degree w_i . For a polynomial $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$, we define the weighted degree,

$$w \operatorname{-deg}(f) := \max\{w \operatorname{-deg}(x^{\alpha}) \mid a_{\alpha} \neq 0\}.$$

Using the weighted degree in the definition of $>_{dp}$, respectively $>_{ds}$ (cf. Example 1.2.8 in the SINGULAR book by Greuel, Pfister), with all $w_i > 0$, instead of the usual degree, we obtain the weighted reverse lexicographical ordering $>_{wp(w_1,...,w_n)}$, respectively the negative weighted reverse lexicographical ordering $>_{ws(w_1,...,w_n)}$.

- (a) Show that $>_A$ is indeed a monomial ordering on $Mon(x_1, \ldots, x_n)$.
- (b) Determine matrices $A \in \operatorname{GL}(n, \mathbb{R})$ defining the orderings
 - (i) $>_{ws(5,3,4)}$ on Mon (x_1, x_2, x_3) with n = 3,
 - (ii) $(>_{dp},>_{ls})$ on Mon $(x_1,\ldots,x_{n_1},y_1,\ldots,y_{n_2})$ with $n=n_1+n_2$,
 - (iii) $(>_{ds}, >_{wp(7,1,9)})$ on Mon $(x_1, \ldots, x_{n_1}, y_1, y_2, y_3)$ with $n = n_1 + 3$.

Problem 3 (4 points). Write a SINGULAR procedure pairSet(list P,ideal I, poly f), having a list $P = ((g_1, h_1), \ldots, (g_r, h_r))$ of pairs of polynomials, an ideal $I = \langle f_1, \ldots, f_s \rangle$ and a polynomial f as input and returning the extended pair set $P = P \cup ((f, f_1), \ldots, (f, f_s))$ as output. Don't forget to add at least one example to your procedure.