Computer Algebra

Winter Semester 2015 - Problem Set 1

Due November 5, 2015, 10:00 am

Problem 1 (8 points). Let A be a ring and $f=\sum_{|\alpha| \geq 0} a_{\alpha} x^{\alpha} \in A\left[x_{1}, \ldots, x_{n}\right]$. Prove the following statements:
(a) f is nilpotent if and only if a_{α} is nilpotent for all α. In particular: $A\left[x_{1}, \ldots, x_{n}\right]$ is reduced if and only if A is reduced.
(Hint: Choose a monomial ordering and argue by induction on the number of summands).
(b) f is a unit in $A\left[x_{1}, \ldots, x_{n}\right]$ if and only if $a_{(0, \ldots, 0)}$ is a unit in A and a_{α} are nilpotent for $\alpha \neq(0, \ldots, 0)$. In particular: $\left(A\left[x_{1}, \ldots, x_{n}\right]\right)^{*}=A^{*}$ if and only if A is reduced.
(Hint: First prove the following statement using a geometric series: If $a \in A\left[x_{1}, \ldots, x_{n}\right]$ is a unit and $b \in A\left[x_{1}, \ldots, x_{n}\right]$ is nilpotent, then $a+b$ is a unit. Deduce the " if "-part from this statement. For the "only if"-part, use this statement and induction on the leading monomial of f with respect to a monomial well-ordering.)
(c) f is a zero-divisor in $A\left[x_{1}, \ldots, x_{n}\right]$ if and only if there exisits some $a \neq 0$ in A such that $a f=0$.
In particular: $A\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain if and only if A is an integral domain.
(Hint: Choose a monomial ordering and $g \in A\left[x_{1}, \ldots, x_{n}\right]$ with minimal number of terms, so that $f g=0$. Conclude that g must be monomial.)
(d) $A\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain if and only if $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for all $f, g \in$ $A\left[x_{1}, \ldots, x_{n}\right]$.

Problem 2 (4 points). Monomial orderings arise in a variety of ways. One possibility is to use matrices to define monomial orderings: The matrix $A \in \mathrm{GL}(n, \mathbb{R})$ defines a monomial ordering $>_{A}$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$ by setting

$$
x^{\alpha}>_{A} x^{\beta}: \Leftrightarrow A \alpha>A \beta,
$$

where $>$ on the right-hand side is the lexicographical ordering on \mathbb{R}^{n}.
One can also define new monomial orderings from "known" orderings using so-called product orderings: Consider a monomial ordering $>_{1}$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}\right)$ and a monomial ordering $>_{2}$ on $\operatorname{Mon}\left(y_{1}, \ldots, y_{n_{2}}\right)$. Then the product ordering or block ordering $>$, also denoted by $\left(>_{1},>_{2}\right)$, on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}, y_{1}, \ldots, y_{n_{2}}\right)$, is defined as

$$
x^{\alpha} y^{\beta}>x^{\alpha^{\prime}} y^{\beta^{\prime}}: \Leftrightarrow x^{\alpha}>_{1} x^{\alpha^{\prime}} \text { or }\left(x^{\alpha}=x^{\alpha^{\prime}} \text { and } y^{\beta}>_{2} y^{\beta^{\prime}}\right) .
$$

Given a vector $w=\left(w_{1}, \ldots, x_{n}\right)$ of integers, we define the weighted degree of x^{α} by

$$
w-\operatorname{deg}\left(x^{\alpha}\right):=\langle w, \alpha\rangle:=w_{1} \alpha_{1}+\cdots+w_{n} \alpha_{n},
$$

that is, the variable x_{i} has degree w_{i}. For a polynomial $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$, we define the weighted degree,

$$
w-\operatorname{deg}(f):=\max \left\{w-\operatorname{deg}\left(x^{\alpha}\right) \mid a_{\alpha} \neq 0\right\} .
$$

Using the weighted degree in the definition of $>_{d p}$, respectively $>_{d s}$ (cf. Example 1.2.8 in the Singular book by Greuel, Pfister), with all $w_{i}>0$, instead of the usual degree, we obtain the weighted reverse lexicographical ordering $>_{w p\left(w_{1}, \ldots, w_{n}\right)}$, respectively the negative weighted reverse lexicographical ordering $>_{w s\left(w_{1}, \ldots, w_{n}\right)}$.
(a) Show that $>_{A}$ is indeed a monomial ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$.
(b) Determine matrices $A \in \mathrm{GL}(n, \mathbb{R})$ defining the orderings
(i) $>_{w s(5,3,4)}$ on $\operatorname{Mon}\left(x_{1}, x_{2}, x_{3}\right)$ with $n=3$,
(ii) $\left(>_{d p},>_{l s}\right)$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}, y_{1}, \ldots, y_{n_{2}}\right)$ with $n=n_{1}+n_{2}$,
(iii) $\left(>_{d s},>_{w p(7,1,9)}\right)$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}, y_{1}, y_{2}, y_{3}\right)$ with $n=n_{1}+3$.

Problem 3 (4 points). Write a Singular procedure pairSet (list P,ideal I, poly f), having a list $P=\left(\left(g_{1}, h_{1}\right), \ldots,\left(g_{r}, h_{r}\right)\right)$ of pairs of polynomials, an ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and a polynomial f as input and returning the extended pair set $P=P \cup\left(\left(f, f_{1}\right), \ldots,\left(f, f_{s}\right)\right)$ as output. Don't forget to add at least one example to your procedure.

