

Algebraische Strukturen

Wintersemester 2015/16 - Zusatzübungsblatt

keine Abgabe

Aufgabe 1. Sei G eine Gruppen mit $g^2 = e$ für alle $g \in G$. Zeigen Sie, dass G abelsch ist.

Aufgabe 2. Wir definieren auf der Menge $M = \mathbb{R} \times \mathbb{R}$ eine Relation durch

$$(a,b) \sim (c,d) : \iff$$
 es existieren $u \in \mathbb{R} \setminus \{0\}, v \in \mathbb{R} : a = uc + v, b = \frac{d}{u}$.

- (a) Zeigen Sie, dass \sim eine Äquivalenzrelation ist.
- (b) Bestimmen Sie die Äquivalenzklassen von (1,0) und (0,1).

Aufgabe 3. Sei (G, \circ) eine Gruppe. Zeigen Sie:

- (a) (G, *) mit $a * b := b \circ a$ (für $a, b \in G$) ist eine Gruppe.
- (b) $(G, \circ) \cong (G, *)$

Aufgabe 4. Bestimmen Sie alle Gruppen der Mächtigkeit 6 bis auf Isomorphie.

Aufgabe 5. Betrachten Sie die Gruppe $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.

- (a) Welcher Zusammenhang besteht zwischen den Untergruppen von $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ und den Untergruppen von $\mathbb{Z}/4\mathbb{Z}$ und $\mathbb{Z}/6\mathbb{Z}$?
- (b) Bestimmen Sie zwei nicht-isomorphe Untergruppen von $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ der Ordnung 12.
- (c) Bestimmen Sie alle Untergruppen der Ordnungen 1, 2, 3, 4, 5 und 6.

Aufgabe 6. Sei $f: G \to H$ ein Gruppenhomomorphismus und $U \subseteq G$, $V \subseteq H$ Normalteiler. Wann ist die induzierte Abbildung $\overline{f}: G/U \to H/V, \overline{g} \mapsto \overline{f(g)}$ wohldefiniert?

Aufgabe 7. Betrachten Sie für n > 2 die Diedergruppe $D_{2n} = \langle \sigma, \tau \rangle$ mit

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ n & 1 & \cdots & n-1 \end{pmatrix} \text{ und } \tau = \begin{pmatrix} 1 & 2 & \cdots & n \\ n & n-1 & \cdots & 1 \end{pmatrix} \in S_n.$$

Zeigen Sie:

- (a) $\langle \tau \rangle$ ist kein Normalteiler von D_{2n} .
- (b) $\langle \sigma \rangle$ ist Normalteiler von D_{2n} . (Geben Sie zwei verschiedene Beweismöglichkeiten an.)
- (c) $D_{2n}/\langle \sigma \rangle \cong \langle \tau \rangle$. Hinweis: Aufgabe 3, Blatt 7

Aufgabe 8. Sei G eine Gruppe, $N, H \triangleleft G$ zwei Normalteiler mit $N \subseteq H$. Beweisen Sie:

$$(G/N)/(H/N) \cong G/H$$

Aufgabe 9. Seien G und H Gruppen mit $U \subseteq G$ und $V \subseteq H$. Zeigen Sie:

$$(G \times H)/(U \times V) \cong G/U \times H/V$$