Algebraic Geometry

Summer Semester 2015 - Problem Set 9

Due June 19, 2015, 11:00 am

In all exercises, the ground field k is assumed to be algebraically closed.
Problem 1. Let $k=\mathbb{C}$. Sketch the set of real points of the complex affine curve $X=V\left(x_{1}^{3}-\right.$ $\left.x_{1} x_{2}^{2}+1\right) \subset \mathbb{A}^{2}$ and compute the points at infinity of its projective closure $\bar{X} \subset \mathbb{P}^{2}$.

Problem 2.

(a) Read carefully through items 7.27 to 7.30 of Andreas Gathmann's lecture notes.
(b) We let $F: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ be the d-th Veronese embedding. Find explicit equations describing $X=F\left(\mathbb{P}^{n}\right)=V(I)$, i.e. generators for a homogeneous ideal I with $V(I)=X$.

Problem 3. Let $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ be a morphism. Prove:
(a) If $X \subset \mathbb{P}^{m}$ is the zero locus of a single homogeneous polynomial in $k\left[x_{0}, \ldots, x_{m}\right]$ then every irreducible compoment of $f^{-1}(X)$ has dimension at least $n-1$.
(b) If $n>m$ then f must be constant.

Problem 4. Let $m, n>0$ positive numbers. Use Problem 3(b) from Problem Set 8 to show that $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is not isomorphic to \mathbb{P}^{n+m}.

