

Algebraic Geometry

Summer Semester 2015 - Problem Set 8

Due June 12, 2015, 11:00 am

In all exercises, the ground field k is assumed to be algebraically closed.

Problem 1.

- (a) Prove that a graded ring R is an integral domain if and only if for all homogeneous $f, g \in R$ with fg = 0 we have f = 0 or g = 0.
- (b) Show that a projective variety X is irreducible if and only if its homogeneous coordinate ring S(X) is an integral domain.

Problem 2. If $X, Y \subset \mathbb{A}^n$ are two pure-dimensional affine varieties then every irreducible component of $X \cap Y$ has dimension at least $\dim(X) + \dim(Y) - n$.

Hint : Use Problem 3 (a) from Problem Set 4.

Problem 3. Let $\emptyset \neq X, Y \subset \mathbb{P}^n$ projective varieties.

- (a) Show that the cone $C(X) \subset \mathbb{A}^{n+1}$ has dimension $\dim(X) + 1$.
- (b) If $\dim X + \dim Y \ge n$ then $X \cap Y \ne \emptyset$.

Problem 4. Let $L_1, L_2 \subset \mathbb{P}^3$ be two disjoint lines (i.e. 1-dimensional subspaces in the sense of Example 6.12 (b)), and let $a \in \mathbb{P}^3 \setminus (L_1 \cup L_2)$. Show that there is a unique line $L \subset \mathbb{P}^3$ through a that intersects L_1 and L_2 .