

Algebraic Geometry

Summer Semester 2015 - Problem Set 2

Due April 30, 2015, 11:00 am

In all exercises, the ground field k is assumed to be algebraically closed.

Problem 1.

- (a) Let $Y = V(y x^2) \subset \mathbb{A}^2$. Show that A(Y) is isomorphic to a polynomial ring in one variable.
- (b) Let Z = V(xy 1). Show that A(Z) is not isomorphic to A(Y).
- (c) Let W = V(f) for some irreducible quadratic polynomial in k[x, y]. Prove that $A(W) \cong A(Z)$ or $A(W) \cong A(Y)$.

Problem 2. Let $X, Y \subset \mathbb{A}^n$ disjoint affine varieties. Prove that $A(X \cup Y) \cong A(X) \times A(Y)$ as *k*-algebras.

Hint: Chinese Remainder Theorem.

Problem 3. Let X be an affine variety. Show that the coordinate ring A(X) is a field if and only if X is a single point. How does the coordinate ring of an affine variety consisting of only finitely many points look like?

Problem 4. Recall Construction 1.20. Let $Y \subset \mathbb{A}^n$ be an affine variety and let $\pi : k[x_1, \ldots, x_n] \to A(Y)$ be the quotient map.

- (a) Show that $V_{\mathbb{A}^n}(\pi^{-1}(S)) = V_Y(S)$ for a subset $S \subset A(Y)$.
- (b) Show that $I_{\mathbb{A}^n}(X) = \pi^{-1}(I_Y(X))$ for a subset $X \subset Y$.
- (c) Use this to prove Proposition 1.21 from the script.