Algebraic Geometry

Summer Semester 2015 - Problem Set 13

Due July 17, 2015, 11:00 am

In all exercises, the ground field k is assumed to be algebraically closed.
Problem 1. Compute the Hilbert function of
(a) two intersecting lines in \mathbb{P}^{3}
(b) two non-intersecting lines in \mathbb{P}^{3}.
(c) (optional) Compute all possible Hilbert functions for four points in \mathbb{P}^{2}.

Problem 2. Show that the degree of the Segre embedding of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ is $\binom{n+m}{n}$.
Problem 3. Prove that every pure-dimensional projective variety of degree 1 is a linear space.
Problem 4. Let $X, Y \subset \mathbb{A}^{2}$ be two affine curves containing the origin. Let $I(X)=(f)$ and $I(Y)=(g)$. Show that the following statements are equivalent:
(a) $\mathscr{O}_{\mathbb{A}^{2}, 0} /(f, g)$ has k-dimension 1 (i.e. the intersection multiplicity of X and Y is 1 at the origin).
(b) X and Y are smooth at 0 and have different tangent spaces at 0 (i.e. X and Y intersect transversely at the origin).

