

## Algebraic Geometry

Summer Semester 2015 - Problem Set 12 Due July 10, 2015, 11:00 am

In all exercises, the ground field k is assumed to be algebraically closed.

**Problem 1.** Let  $X \subset \mathbb{P}^3$  the degree-3 Veronese embedding of  $\mathbb{P}^1$ . Since X is isomorphic to  $\mathbb{P}^1$  we know that X is necessarily a smooth curve. Verify this directly with the projective Jacobian criterion.

**Problem 2.** Let  $X \subset \mathbb{P}^N$  be a projective variety of dimension n. Show that:

- (a) There exists an injective morphism from X to  $\mathbb{P}^{2n+1}$ . (*Hint:* The secant variety  $\operatorname{Sec}(X)$  of X is the closure of the set of all points of  $\mathbb{P}^N$  contained in a line defined by two points of X. Show that  $\dim \operatorname{Sec}(X) \leq 2n+1$ .)
- (b) There is in general no such morphism that is an isomorphism onto its image.

## **Problem 3.** Let $n \geq 2$ . Prove:

- (a) Every smooth hypersurface in  $\mathbb{P}^n$  is irreducible.
- (b) A general hypersurface in  $\mathbb{P}^n_{\mathbb{C}}$  is smooth. More precisely, for d>0 the vector space  $\mathbb{C}[x_0,\ldots,x_n]_d$  has dimension  $\binom{n+d}{n}$  and so the space of homogeneous degree-d polynomials modulo scalars can be identified with  $\mathbb{P}^{\binom{n+d}{d}-1}_{\mathbb{C}}$ . Show that the subset of this projective space of all (classes of) irreducible polynomials f such that  $V_p(f)$  is smooth is dense and open.

**Problem 4.** Let  $\operatorname{char}(k) \neq 2$  and let  $f \in k[x_0, x_1, x_2]$  be a homogeneous polynomial whose partial derivatives do not vanish simultaneously at any point of  $X = V_p(f)$ . Consider the morphism  $F: X \to \mathbb{P}^2$ , with  $F(a) = (\frac{\partial f}{\partial x_0}(a) : \frac{\partial f}{\partial x_1}(a) : \frac{\partial f}{\partial x_2}(a))$  for  $a \in X$ . The projective variety F(X) is called the *dual curve* to X.

- (a) Find a geometric description of F. What does it mean geometrically if F(a) = F(b) for two distinct points  $a, b \in X$ ?
- (b) If X is a conic, prove that F(X) is also a conic.