Algebraic Geometry Summer Semester 2015 - Problem Set 11 Due July 3, 2015, 11:00 am In all exercises, the ground field k is assumed to be algebraically closed. **Problem 1.** Let $X = V(x_2^2 - x_1^2 - x_1^3) \subset \mathbb{A}^2$. We know that \mathbb{A}^1 is not isomorphic to X. Show that \widetilde{X} is isomorphic to \mathbb{A}^1 . Can you interpret these results geometrically? **Problem 2.** Let $\widetilde{\mathbb{A}}^3$ be the blow-up of \mathbb{A}^3 at the line $V(x_1, x_2) \cong \mathbb{A}^1$. Show that its exceptional set is isomorphic to $\mathbb{A}^1 \times \mathbb{P}^1$. When do the strict transforms of two lines in \mathbb{A}^3 through $V(x_1, x_2)$ intersect in the blow-up? Describe the geometric meaning of the points in the exceptional set in the context of Example 9.15. **Problem 3.** Let $X \subset \mathbb{A}^n$ be an affine vairety, and let $Y_1, Y_2 \subsetneq X$ be irreducible, closed subsets, no-one contained in the other. Let \tilde{X} be the blow-up of X at the ideal $I(Y_1) + I(Y_2)$. Show that the strict transforms of Y_1 and Y_2 in \tilde{X} are disjoint. **Problem 4.** Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal, and assume that the corresponding affine variety $X = V(I) \subset \mathbb{A}^n$ contains the origin. Consider the blow-up $\widetilde{X} \subset \widetilde{\mathbb{A}^n} \subset \mathbb{A}^n \times \mathbb{P}^{n-1}$. at x_1, \ldots, x_n and denote the homogeneous coordinates of \mathbb{P}^{n-1} by y_1, \ldots, y_n . By Example 9.15 we know that $\widetilde{\mathbb{A}^n}$ can be covered by affine spaces, with one coordinate patch being $\mathbb{A}^n \to \widetilde{\mathbb{A}^n} \subset \mathbb{A}^n \times \mathbb{P}^{n-1}$, where $(x_1, y_2, \dots, y_n) \mapsto ((x_1, x_1 y_2, \dots, x_1 y_n), (1 : y_2 : \dots : y_n))$. Prove that on this coordinate patch the blow-up \widetilde{X} is given as the zero locus of the polynomials $\frac{f(x_1,x_1y_2,...,x_1y_n)}{x_1^{\min\deg(f)}}$, for all non-zero $f\in I$, where $\min\deg(f)$ denotes the smallest degree of a monomial in f.