

## Computer Algebra

Winter Semester 2014 - Problem Set 9

Due January 15, 2015, 10:00

## Problem 1:

- (a) Let K be a field of characteristic 0,  $\overline{K}$  its algebraic closure and  $\mathfrak{a} \leq K[x_1, \ldots, x_n]$  an ideal. Prove that  $\mathfrak{a} \cdot \overline{K}[x_1, \ldots, x_n] \cap K[x_1, \ldots, x_n] = \mathfrak{a}$
- (b) Let R be a Noetherian ring,  $\mathfrak{a} \leq R$  an ideal. Show that the two conditions are equivalent:
  - (i)  $\operatorname{Ass}_R(R/\mathfrak{a}) = \{\mathfrak{p}\}$  for some  $\mathfrak{p} \in \operatorname{Spec}(R)$
  - (ii) for any  $a, b \in R$ ,  $ab \in \mathfrak{a}$  and  $a \notin \mathfrak{a}$  implies  $b \in \sqrt{\mathfrak{a}}$

If the above conditions are satisfied, we have  $\mathfrak{p} = \sqrt{\mathfrak{a}}$ .

**Problem 2:** Let  $\mathfrak{a} \leq K[x_1, \ldots, x_n]$ ,  $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_r$  be an irredundant primary decomposition. Let  $u \subseteq \{x_1, \ldots, x_n\}$  be an independent set with respect to  $\mathfrak{a}$ . Suppose that  $\mathfrak{q}_i \cap K[u] = \langle 0 \rangle$  for  $0 < i \leq s$  and that  $\mathfrak{q}_i \cap K[u] \neq \langle 0 \rangle$  for  $s < i \leq r$  for some  $1 \leq s \leq r$ . Prove that  $\mathfrak{a} \cdot K(u)[x \setminus u] = \bigcap_{i=1}^s \mathfrak{q}_i \cdot K(u)[x \setminus u]$  is an irredundant primary decomposition.

**Problem 3:** Let > be a monomial ordering on  $Mon(x_1, \ldots, x_n)$ , let  $\mathfrak{a} \leq K[x_1, \ldots, x_n]$  an ideal. Let  $u \subseteq \{x_1, \ldots, x_n\}$  be an independent set with respect to  $LM_{>}(\mathfrak{a})$ . Prove that u is an independent set with respect to I. Use the fact that

$$\dim(K[x_1,\ldots,x_n]/\mathfrak{a}) = \dim(K[x_1,\ldots,x_n]/\operatorname{LM}_{>}(\mathfrak{a}))$$

to see that a maximal independent set for  $LM_{>}(\mathfrak{a})$  is also a maximal independent set for  $\mathfrak{a}$ .

**Problem 4** Modify the procedure in the SINGULAR Example 3.5.9 in  $[GP]^1$  to compute a maximal independent set for an ideal.

<sup>&</sup>lt;sup>1</sup>Gert-Martin Greuel, Gerhard Pfister: "A SINGULAR Introcution to Commutative Algebra"