

Computer Algebra

Winter Semester 2014 - Problem Set 3

Due November 20, 2014, 10:00

Problem 1: Let > be any monomial ordering, $R = K[x_1, \ldots, x_n]_>$, $I \subset R$ an ideal, $G \subset I$ a standard basis of I and NF(-, G) a normal form on R. Show that:

- 1. If NF(-,G) is reduced, then it is unique.
- 2. If G is a reduced, then it is unique.

Problem 2:

- 1. Show by example that reduced normal forms with respect to non-global orderings do in general not exist.
- 2. Let > be the ordering ds. Compute a standard representation of x_1 with respect to $\{x_1 x_2, x_2 x_1^2\}$ in $K[x_1, x_2]_>$.

Problem 3: (*Product Criterion*) Let > be a global monomial ordering on $Mon(x_1, \ldots, x_n)$. Let $f, g \in K[x_1, \ldots, x_n]$ be polynomials such that $lcm(LM_>(f), LM_>(g)) = LM_>(f) \cdot LM_>(g)$. Prove that

$$NF(spoly(f,g) \mid \{f,g\}) = 0.$$

Hint: Assume that $LC_>(f) = LC_>(g) = 1$ and claim that $spoly(f,g) = -tail(g) \cdot f + tail(f) \cdot g$ is a standard representation.

Problem 4: Write a SINGULAR procedure to compute the reduced normal form of a given polynomial $f \in K[x_1, \ldots, x_n]$ with respect to a given finite list of polynomials $G \subseteq K[x_1, \ldots, x_n]$ and a global monomial ordering > without the use of the commands reduce and NF.