

Computer Algebra

Winter Semester 2014 - Problem Set 1

Due November 6, 2013, 10:00 am

Problem 1. Let γ be a totally ordered monoid and R be a γ -filtered ring.

- (a) Let $0 \to M' \xrightarrow{\varphi} M \xrightarrow{\psi} M'' \to 0$ be a short exact sequence of *R*-modules and F_{\bullet} a γ filtration on *M*. Define by $F_pM' := \varphi^{-1}F_pM$ and $F_pM'' := \psi F_pM$ filtrations F_{\bullet} on M'and M''. Show that the above sequence is strict with respect to F_{\bullet} (i.e. the maps in the
 above sequence are strict with respect to F_{\bullet}).
- (b) Let $0 \to M \xrightarrow{\varphi} N \xrightarrow{\psi} P \to 0$ be a short exact sequence. Assume that M, N and P are \mathbb{Z} -filtered modules with filtrations F_{\bullet}^X such that $F_p^X X = 0$ for p < 0 and $F_1^X X = X$ (where $X \in \{M, N, P\}$). Show that the following are equivalent:
 - (i) The above sequence is strict.
 - (ii) The above sequence induces short exact sequences

$$0 \to F_0^M M \to F_0^N N \to F_0^P P \to 0$$

and

$$0 \to \operatorname{gr}_1^{F^M} M \to \operatorname{gr}_1^{F^N} N \to \operatorname{gr}_1^{F^P} P \to 0.$$

- (c) Let $\varphi : M \to N$ be a γ -filtered homomorphism, where M and N are γ -filtered R-modules with filtrations F_{\bullet} and G_{\bullet} , respectively. Under a suitable hypothesis on F_{\bullet} and G_{\bullet} show that the following are equivalent:
 - (i) φ is strict with respect to F_{\bullet} and G_{\bullet} ,
 - (ii) $\operatorname{gr}_{\bullet}^{F} \varphi(M) = \operatorname{gr}_{\bullet}^{G} \varphi(M).$

Note that there is a map $F_{\bullet}\varphi(M) \xrightarrow{\mathrm{id}} G_{\bullet}\varphi(M)$.

Problem 2. Monomial orderings arise in a variety of ways. One possibility is to use matrices to define monomial orderings: The matrix $A \in GL(n, \mathbb{R})$ defines a monomial ordering $>_A$ on $Mon(x_1, \ldots, x_n)$ by setting

$$x^{\alpha} >_A x^{\beta} :\Leftrightarrow A\alpha > A\beta,$$

where > on the right-hand side is the lexicographical ordering on \mathbb{R}^n .

One can also define new monomial orderings from "known" orderings using so-called product orderings: Consider a monomial ordering $>_1$ on $Mon(x_1, \ldots, x_{n_1})$ and a monomial ordering $>_2$ on $Mon(y_1, \ldots, y_{n_2})$. Then the product ordering or block ordering >, also denoted by $(>_1, >_2)$, on $Mon(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})$, is defined as

$$x^{\alpha}y^{\beta} > x^{\alpha'}y^{\beta'} :\Leftrightarrow x^{\alpha} >_1 x^{\alpha'} \text{ or } \left(x^{\alpha} = x^{\alpha'} \text{ and } y^{\beta} >_2 y^{\beta'}\right).$$

Given a vector $w = (w_1, \ldots, x_n)$ of integers, we define the weighted degree of x^{α} by

w-deg $(x^{\alpha}) := \langle w, \alpha \rangle := w_1 \alpha_1 + \dots + w_n \alpha_n,$

that is, the variable x_i has degree w_i . For a polynomial $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$, we define the weighted degree,

 $w \operatorname{-deg}(f) := \max\{w \operatorname{-deg}(x^{\alpha}) \mid a_{\alpha} \neq 0\}.$

Using the weighted degree in the definition of $>_{dp}$, respectively $>_{ds}$ (cf. Example 1.2.8 in the SINGULAR book by Greuel, Pfister), with all $w_i > 0$, instead of the usual degree, we obtain the weighted reverse lexicographical ordering $>_{wp(w_1,...,w_n)}$, respectively the negative weighted reverse lexicographical ordering $>_{ws(w_1,...,w_n)}$.

- (a) Show that $>_A$ is indeed a monomial ordering on $Mon(x_1, \ldots, x_n)$.
- (b) Determine matrices $A \in GL(n, \mathbb{R})$ defining the orderings
 - (i) $>_{ws(5,3,4)}$ on Mon (x_1, x_2, x_3) with n = 3,
 - (ii) $(>_{dp},>_{ls})$ on Mon $(x_1,\ldots,x_{n_1},y_1,\ldots,y_{n_2})$ with $n=n_1+n_2$,
 - (iii) $(>_{ds}, >_{wp(7,1,9)})$ on Mon $(x_1, \ldots, x_{n_1}, y_1, y_2, y_3)$ with $n = n_1 + 3$.

Problem 3. Write a SINGULAR procedure, having a list $P = ((g_1, h_1), \ldots, (g_r, h_r))$ of pairs of polynomials, an ideal $I = \langle f_1, \ldots, f_s \rangle$ and a polynomial f as input and returning the extended pair set $P = P \cup ((f, f_1), \ldots, (f, f_s))$ as output.

Don't forget to add at least one example to your procedure.