

Einführung in die Algebra

Wintersemester 2013/14 - Übungsblatt 3

Abgabetermin: 28.11.2013, 12:00h

Aufgabe 1. Benutzen Sie die Koordinatentransformation $x \mapsto x - 1$ um zu untersuchen, ob das Polynom $f = x^7 + 7x^6 + 21x^5 + 35x^4 + 35x^3 + 27x^2 + 23x + 13 \in \mathbb{Q}[x]$ irreduzibel ist.

Aufgabe 2. Seien $K \subset Z \subset L$ Körper und L/K galoissch. Zeigen Sie:

- (a) Ist G(L/Z) ein Normalteiler in G(L/K), so gilt $\sigma(Z) = Z$ für alle $\sigma \in G(L/K)$.
- (b) Gilt $\sigma(Z) = Z$ für alle $\sigma \in G(L/K)$, so ist die Abbildung $G(L/K) \to G(Z/K) : \sigma \mapsto \sigma|_Z$ ein wohldefinierter Homomorphismus.
- (c) Ist G(L/Z) ein Normalteiler in G(L/K), so ist auch Z/K galoissch und der Homomorphismus aus Teil (b) induziert einen Isomorphismus $G(Z/K) \cong G(L/K)/G(L/Z)$.

Aufgabe 3. Es sei L/K eine galoissche Körpererweiterung mit L=K(a). Für eine Untergruppe $G \leq \operatorname{Gal}(L/K)$ setzen wir nun

$$f := \prod_{\sigma \in G} (t - \sigma(a)) \in L[t].$$

Ferner seien $\lambda_0, \ldots, \lambda_n \in L$ die Koeffizienten von f, also $f = \sum_{i=0}^n \lambda_i t^i$. Ist dann $Z = L^G$ der zu G gehörige Zwischenkörper von L/K in der Galois-Korrespondenz, so zeige man:

- (a) $f \in Z[t]$.
- (b) f ist das Minimalpolynom von a über Z und über $K(\lambda_0, \ldots, \lambda_n)$.
- (c) $Z = K(\lambda_0, \ldots, \lambda_n)$.

Aufgabe 4. Bestimmen Sie mit Hilfe der Galoistheorie alle Zwischenkörper der Körpererweiterungen

- (a) $\mathbb{Q}(\sqrt{5} + \sqrt{7})/\mathbb{Q}$,
- (b) $\mathbb{Q}(e^{\frac{2\pi i}{5}})/\mathbb{Q}$.