Computer Algebra

Winter Semester 2013 - Problem Set 9

Due January 14, 2014, 12:00

Problem 1: Let $\mathfrak{a} \unlhd \mathbb{Q}[x]$ be a homogeneous ideal and $\mathfrak{a}_{0}:=\mathfrak{a} \cap \mathbb{Z}[x]$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. Let $p \in \mathbb{N}$ be a prime number, $\mathfrak{a}_{p}:=\overline{\mathfrak{a}}_{0} \unlhd \mathbb{F}_{p}[x]$. Prove that

$$
H_{\mathbb{Q}[x] / \mathfrak{a}}(n) \leq H_{\mathbb{F}_{p}[x] / \mathfrak{a}_{p}}(n) \text { for all } n \in \mathbb{N}
$$

Problem 2: Let $H: \mathbb{N} \rightarrow \mathbb{Z}$ be any function. Show that the following are equivalent:
(i) $H(n)$ is a polynomial of degree d for sufficiently large n,
(ii) $D(n):=H(n+1)-H(n)$ is a polynomial of degree $d-1$ for sufficiently large n,
(iii) $S(n):=\sum_{i=0}^{n-1} H(i)$ is a polynomial of degree $d+1$ for sufficiently large n.

Moreover, if $\frac{a_{d}}{d!}$ is the leading coefficient of H, then D and S have leading coefficient $\frac{a_{d}}{(d-1)!}$ and $\frac{a_{d}}{(d+1)!}$ respectively.

Problem 3: Write a Singular prodecure to compute the Hilbert polynomial of $K\left[x_{1}, \ldots, x_{n}\right] / I$ for a given homogeneous ideal I.

