

Computer Algebra

Winter Semester 2013 - Problem Set 8 Due January 7, 2014, 12:00

Problem 1:

- (a) Let K be a field of characteristic 0, \overline{K} its algebraic closure and $\mathfrak{a} \subseteq K[x_1, \ldots, x_n]$ an ideal. Prove that $\mathfrak{a} \cdot \overline{K}[x_1, \ldots, x_n] \cap K[x_1, \ldots, x_n] = \mathfrak{a}$
- (b) Let R be a Noetherian ring, $\mathfrak{a} \subseteq R$ an ideal. Show that the two conditions are equivalent:
 - (i) $\operatorname{Ass}_R(R/\mathfrak{a}) = \{\mathfrak{p}\}\ \text{for some }\mathfrak{p} \leq R/\mathfrak{a}$
 - (ii) for any $a, b \in R$, $ab \in \mathfrak{a}$ and $a \notin \mathfrak{a}$ implies $b \in \sqrt{\mathfrak{a}}$

Problem 2: Let $\mathfrak{a} \subseteq K[x_1,\ldots,x_n]$, $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_r$ be an irredundant primary decomposition. Let $u \subseteq \{x_1,\ldots,x_n\}$ be an independent set with respect to \mathfrak{a} . Suppose that $\mathfrak{q}_i \cap K[u] = \langle 0 \rangle$ for $0 < i \le s$ and that $\mathfrak{q}_i \cap K[u] \ne \langle 0 \rangle$ for $s < i \le r$ for some $1 \le s \le r$. Prove that $I \cdot K(u)[x \setminus u] = \bigcap_{i=1}^s Q_i \cdot K(u)[x \setminus u]$ is an irredundant primary decomposition.

Problem 3: Let > be a monomial ordering on $\operatorname{Mon}(x_1, \ldots, x_n)$, let $\mathfrak{a} \subseteq K[x_1, \ldots, x_n]$ an ideal. Let $u \subseteq \{x_1, \ldots, x_n\}$ be an independent set with respect to $\operatorname{LM}_{>}(\mathfrak{a})$. Prove that u is an independent set with respect to I. Use the fact that

$$\dim(K[x_1,\ldots,x_n]/\mathfrak{a}) = \dim(K[x_1,\ldots,x_n]/LM_{>}(\mathfrak{a}))$$

to see that a maximal independent set for $LM_{>}(\mathfrak{a})$ is also a maximal independent set for \mathfrak{a} .

Problem 4 Modify the procedure in the Singular Example 3.5.9 in [GP]¹ to compute a maximal independent set for an ideal.

¹Gert-Martin Greuel, Gerhard Pfister: "A SINGULAR Introcution to Commutative Algebra"