

Computer Algebra

Winter Semester 2013 - Problem Set 3

Due November 19, 2013, 12:00

Problem 1: Check by hand whether the following inclusions are correct:

- (a) $xy^3 z^2 + y^5 z^3 \in \langle -x^3 + y, x^2y z \rangle \trianglelefteq \mathbb{Q}[x, y, z]$
- (b) $x^3z 2y^2 \in \langle yz y, xy + 2z^2, y z \rangle \trianglelefteq \mathbb{Q}[x, y, z]$
- (c) $x^3z 2y^2 \in \langle yz y, xy + 2z^2, y z \rangle \trianglelefteq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$

Problem 2: (*Product Criterion*) Let > be a global monomial ordering on $Mon(x_1, \ldots, x_n)$. Let $f, g \in K[x_1, \ldots, x_n]$ be polynomials such that $lcm(LM_>(f), LM_>(g)) = LM_>(f) \cdot LM_>(g)$. Prove that

$$NF(spoly(f,g) \mid \{f,g\}) = 0.$$

Hint: Assume that $LC_>(f) = LC_>(g) = 1$ and claim that $spoly(f,g) = -tail(g) \cdot f + tail(f) \cdot g$ is a standard representation.

Problem 3: Let $R := K[x_1, \ldots, x_n]$ be a polynomial ring, > a global monomial ordering on $Mon(x_1, \ldots, x_n)$, and $I \leq R$ an ideal. Let $G = \{g_1, \ldots, g_k\}$ be a generating set of I. Consider the complex

$$C: \quad \widetilde{G}_{\bullet} R^k \longrightarrow F_{\bullet}^{>} R \longrightarrow F_{\bullet}^{>}(R/I) \longrightarrow 0,$$
$$e_i \longmapsto g_i$$

in which the filtration $F_{\bullet}^{>}$ on R is induced by the monomial ordering >, the filtration $F_{\bullet}^{>}$ on R/I is induced by the filtration $F_{\bullet}^{>}$ on R and the quotient map $R \to R/I$, and the filtration \widetilde{G}_{\bullet} on R^{k} denotes the coarse Schreyer filtration on R^{r} induced by g_{1}, \ldots, g_{k} . Show that G is a standard basis with respect to > if the sequence

$$\operatorname{gr} C: \operatorname{gr}^{\widetilde{G}} R^k \longrightarrow \operatorname{gr}^{F^>} R \longrightarrow \operatorname{gr}^{F^>} R/I \longrightarrow 0$$

is exact.

Problem 4: Write a SINGULAR procedure to compute the reduced normal form of a given polynomial $f \in K[x_1, \ldots, x_n]$ with respect to a given finite list of polynomials $G \subseteq K[x_1, \ldots, x_n]$ and a global monomial ordering > without the use of the commands reduce and NF.