Computer Algebra

Winter Semester 2013 - Problem Set 3

Due November 19, 2013, 12:00

Problem 1: Check by hand whether the following inclusions are correct:
(a) $x y^{3}-z^{2}+y^{5}-z^{3} \in\left\langle-x^{3}+y, x^{2} y-z\right\rangle \unlhd \mathbb{Q}[x, y, z]$
(b) $x^{3} z-2 y^{2} \in\left\langle y z-y, x y+2 z^{2}, y-z\right\rangle \unlhd \mathbb{Q}[x, y, z]$
(c) $x^{3} z-2 y^{2} \in\left\langle y z-y, x y+2 z^{2}, y-z\right\rangle \unlhd \mathbb{Q}[x, y, z]_{\langle x, y, z\rangle}$

Problem 2: (Product Criterion) Let $>$ be a global monomial ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$. Let $f, g \in K\left[x_{1}, \ldots, x_{n}\right]$ be polynomials such that $\operatorname{lcm}\left(\mathrm{LM}_{>}(f), \mathrm{LM}_{>}(g)\right)=\mathrm{LM}_{>}(f) \cdot \mathrm{LM}_{>}(g)$. Prove that

$$
\mathrm{NF}(\operatorname{spoly}(f, g) \mid\{f, g\})=0 .
$$

Hint: Assume that $\mathrm{LC}_{>}(f)=\mathrm{LC}_{>}(g)=1$ and claim that $\operatorname{spoly}(f, g)=-\operatorname{tail}(g) \cdot f+\operatorname{tail}(f) \cdot g$ is a standard representation.
Problem 3: Let $R:=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, $>$ a global monomial ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$, and $I \unlhd R$ an ideal. Let $G=\left\{g_{1}, \ldots, g_{k}\right\}$ be a generating set of I. Consider the complex

$$
\begin{aligned}
C: \quad \widetilde{G}_{\bullet} R^{k} & \longrightarrow F_{\bullet}^{>} R \longrightarrow F_{\bullet}^{>}(R / I) \longrightarrow 0, \\
e_{i} & \longmapsto g_{i}
\end{aligned}
$$

in which the filtration F_{\bullet} on R is induced by the monomial ordering $>$, the filtration $F_{\bullet}^{>}$on R / I is induced by the filtration F_{\bullet}^{\gtrless} on R and the quotient map $R \rightarrow R / I$, and the filtration $\widetilde{G} \bullet$ on R^{k} denotes the coarse Schreyer filtration on R^{r} induced by g_{1}, \ldots, g_{k}. Show that G is a standard basis with respect to $>$ if the sequence

$$
\operatorname{gr} C: \quad \operatorname{gr}^{\widetilde{G}} R^{k} \longrightarrow \operatorname{gr}^{F^{>}} R \longrightarrow \mathrm{gr}^{F^{>}} R / I \longrightarrow 0
$$

is exact.
Problem 4: Write a Singular procedure to compute the reduced normal form of a given polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ with respect to a given finite list of polynomials $G \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and a global monomial ordering $>$ without the use of the commands reduce and $N F$.

