

Computer Algebra

Winter Semester 2013 - Problem Set 2

Due November 12, 2013, 12:00

Problem 1: Let > be an ordering on $\operatorname{Mon}(x_1, \ldots, x_n)$ and $\mathfrak{p} \subseteq K[x_1, \ldots, x_n]$ a prime ideal such that $K[x_1, \ldots, x_n]_> = K[x_1, \ldots, x_n]_{\mathfrak{p}}$. Prove that \mathfrak{p} is a monomial ideal, i.e. that it can be generated by monomials.

Problem 2: For a polynomial $f = \sum_{\alpha \in \mathbb{N}^n} c_\alpha \cdot x_1^{\alpha_1} \dots x_n^{\alpha_n} \in K[x_1, \dots, x_n]$ and for an ideal $\mathfrak{a} \subseteq K[x_1, \dots, x_n]$ let

$$f^{h} := \sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} \cdot x_{0}^{\deg(f) - |\alpha|} x_{1}^{\alpha_{1}} \dots x_{n}^{\alpha_{n}} \in K[x_{0}, \dots, x_{n}],$$
$$\mathfrak{a}^{h} := \langle f^{h} \mid f \in I \rangle \subseteq K[x_{0}, \dots, x_{n}].$$

Now let > be a global degree ordering, and let $\{g_1, \ldots, g_k\}$ be a Gröbner basis of \mathfrak{a} . Prove that $\mathfrak{a}^h = \langle g_1^h, \ldots, g_k^h \rangle$.

Problem 3: For an ordering > on $\operatorname{Mon}(x_1, \ldots, x_n)$ defined by a matrix $A \in \operatorname{GL}(n, \mathbb{Q})$ let $>_h$ be the ordering on $\operatorname{Mon}(x_0, \ldots, x_n)$ defined by the matrix

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & & & \\ \vdots & & A & \\ 0 & & & \end{pmatrix}.$$

Let $\mathfrak{a} \subseteq K[x_1,\ldots,x_n]$ be an ideal and let $\{G_1,\ldots,G_k\}$ a homogeneous (i.e. each G_i only has terms of a fixed degree) standard basis of $\mathfrak{a}^h \subseteq K[x_0,\ldots,x_n]$ with respect to $>_h$. Prove that $\{G_1|_{x_0=1},\ldots,G_k|_{x_0=1}\}$ is a standard basis for \mathfrak{a} with respect to >.

Problem 4: Write a SINGULAR procedure that, having as input a polynomial $f \in K[x]$, K field, and an integer $n \in \mathbb{N}$, returns the power series expansion of the inverse of f up to terms of degree n if f is a unit in K[x] and 0 if f is not a unit.