Prof. Dr. Mathias Schulze

Dipl.-Math. Cornelia Rottner
Fachbereich Mathematik

Computer Algebra

Winter Semester 2013 - Problem Set 1

Due October 31, 2013, 2:00 pm
Problem 1. Let P be a totally ordered monoid and R be a P-filtered ring.
(a) Let $0 \rightarrow M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime} \rightarrow 0$ be a short exact sequence of R-modules and F_{\bullet} a P_{-} filtration on M. Define by $F_{p} M^{\prime}:=\varphi^{-1} F_{p} M$ and $F_{p} M^{\prime \prime}:=\psi F_{p} M$ filtrations F_{\bullet} on M^{\prime} and $M^{\prime \prime}$. Show that the above sequence is strict with respect to F_{\bullet}.
(b) Let $\varphi: M \rightarrow N$ be a P-filtered homomorphism, where M and N are P-filtered R-modules with filtrations F_{\bullet} and G_{\bullet}, respectively. Under a suitable hypothesis on F_{\bullet} and G_{\bullet} show that the following are equivalent:
(a) φ is strict with respect to F_{\bullet} and G_{\bullet},
(b) $F_{\bullet} \varphi(M)=G_{\bullet} \varphi(M)$ (where the filtrations are defined as in part (a)),
(c) $\operatorname{gr}_{\bullet}^{F} \varphi(M)=\operatorname{gr}_{\bullet}^{G} \varphi(M)$.

Note that there is a map $F_{\bullet} \varphi(M) \xrightarrow{\text { id }} G_{\bullet} \varphi(M)$.
Problem 2. The matrix $A \in \operatorname{GL}(n, \mathbb{R})$ defines a monomial ordering $>_{A}$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$ by setting

$$
x^{\alpha}>_{A} x^{\beta}: \Leftrightarrow A \alpha>A \beta,
$$

where $>$ on the right-hand side is the lexicographical ordering on \mathbb{R}^{n}.
(a) Show that $>_{A}$ is indeed a monomial ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$.
(b) Let $>$ be any monomial ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$. Then there is a matrix $A \in \operatorname{GL}(n, \mathbb{R})$ such that $>$ can be defined as $>_{A}$.

Problem 3. Consider a monomial ordering $>_{1}$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}\right)$ and a monomial ordering $>_{2}$ on $\operatorname{Mon}\left(y_{1}, \ldots, y_{n_{2}}\right)$. Then the product ordering or block ordering $>$, also denoted by $\left(>_{1},>_{2}\right)$, on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}, y_{1}, \ldots, y_{n_{2}}\right)$, is defined as

$$
x^{\alpha} y^{\beta}>x^{\alpha^{\prime}} y^{\beta^{\prime}}: \Leftrightarrow x^{\alpha}>_{1} x^{\alpha^{\prime}} \text { or }\left(x^{\alpha}=x^{\alpha^{\prime}} \text { and } y^{\beta}>_{2} y^{\beta^{\prime}}\right) .
$$

Given a vector $w=\left(w_{1}, \ldots, x_{n}\right)$ of integers, we define the weighted degree of x^{α} by

$$
w-\operatorname{deg}\left(x^{\alpha}\right):=\langle w, \alpha\rangle:=w_{1} \alpha_{1}+\cdots+w_{n} \alpha_{n}
$$

that is, the variable x_{i} has degree w_{i}. For a polynomial $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$, we define the weighted degree,

$$
w-\operatorname{deg}(f):=\max \left\{w-\operatorname{deg}\left(x^{\alpha}\right) \mid a_{\alpha} \neq 0\right\} .
$$

Using the weighted degree in the definition of $>_{d p}$, respectively $>_{d s}$ (cf. Example 1.2.8 in the Singular book by Greuel, Pfister), with all $w_{i}>0$, instead of the usual degree, we obtain the weighted reverse lexicographical ordering $>_{w p\left(w_{1}, \ldots, w_{n}\right)}$, respectively the negative weighted reverse lexicographical ordering $>_{w s\left(w_{1}, \ldots, w_{n}\right)}$. Now determine matrices $A \in \operatorname{GL}(n, \mathbb{R})$ defining the orderings
(a) $>_{w s(5,3,4)}$ on $\operatorname{Mon}\left(x_{1}, x_{2}, x_{3}\right)$ with $n=3$,
(b) $\left(>_{d p},>_{l s}\right)$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}, y_{1}, \ldots, y_{n_{2}}\right)$ with $n=n_{1}+n_{2}$,
(c) $\left(>_{d s},>_{w p(7,1,9)}\right)$ on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n_{1}}, y_{1}, y_{2}, y_{3}\right)$ with $n=n_{1}+3$.

Problem 4. Write a Singular procedure, having a list $P=\left(\left(g_{1}, h_{1}\right), \ldots,\left(g_{r}, h_{r}\right)\right)$ of pairs of polynomials, an ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and a polynomial f as input and returning the extended pair set $P=P \cup\left(\left(f, f_{1}\right), \ldots,\left(f, f_{s}\right)\right)$ as output.
Don't forget to add at least one example to your procedure.

