HOMEWORK 8

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1. Let *E* be a free module of rank *n* over a commutative ring *R*, and denote by $-^{\vee} = \text{Hom}_R(-, R)$ the dualizing functor. Construct isomorphisms:

- (a) $\bigwedge^k (E^{\vee}) \cong (\bigwedge^k E)^{\vee}$
- (b) $\bigwedge^k E \cong (\bigwedge^{n-k} E)^{\vee}$

Exercise 2. Let R be a commutative ring.

- (a) Show that any exact sequence $K \to M \to N \to 0$ of *R*-modules induces an exact sequence $\bigwedge K \otimes \bigwedge M \to \bigwedge M \to \bigwedge N \to 0$ of *R*-algebras.
- (b) For *R*-modules *M* and *N*, show that $\bigwedge (M \oplus N) \cong \bigwedge M \otimes \bigwedge N$ as *R*-algebras.

Exercise 3.

- (a) Compute $\operatorname{Tor}_{K[x,y]}^{i}(K, K)$ where K is a field.
- (b) Compute $F_i \mathfrak{a}$ where $\mathfrak{a} = \langle x, y, z \rangle \leq K[x, y, z]$.

Exercise 4.

- (a) Assume that $\mathbb{Q} \subseteq R$, and let M be an R-module. Define splittings of the canonical maps $\bigotimes^p M \to \bigwedge^p M$ and $\bigotimes^p M \to S^p M$.
- (b) For a finite dimensional K-vector space V, show that $\bigotimes^2 V \cong S^2 V \oplus \bigwedge^2 V$.