HOMEWORK 6

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1 (Zariski topology). Let A be a commutative ring and Spec A the set of its proper prime ideals. For any subset $S \subseteq A$, set $V(S) := \{ \mathfrak{p} \in \text{Spec } A \mid S \subseteq \mathfrak{p} \}$ and $D(S) := \text{Spec } A \setminus V(S)$. Note that V(S) = V(I) where $I = \langle S \rangle$ is the ideal generated by S.

A topological space X is called *irreducible* if $X = X_1 \cup X_2$ with $X_i \subset X$ closed implies that $X = X_i$ for some i. A subset $Y \subset X$ is called *irreducible*, if it is irreducible with its relative topology ($U \subseteq Y$ is open if and only if $U = Y \cap U'$ with $U' \subseteq X$ open).

- 1. Show that the V(S) (resp. D(S)) are the closed (resp. open) sets of a topology on Spec A, the so-called Zariski topology.
- 2. Show that the $D(f) := D({f}), f \in A$, form a basis of the Zariski topology.
- 3. Interpret $I \mapsto V(I)$ as an inclusion reversing bijection.
- 4. Show that a point $\mathfrak{p} \in \operatorname{Spec} A$ is closed if and only if $\mathfrak{p} \leq A$ is a maximal ideal.
- 5. Show that a radical ideal $I \leq A$ is prime if and only if V(I) is irreducible.
- 6. Describe Spec K for K a field. Sketch Spec Z, where is $\mathfrak{p} = \langle 0 \rangle$?
- 7. Show that Spec is a contravariant functor from rings to topological spaces.
- 8. For $f \in A$, show that Spec A_f is homeomorphic to the open subset D(f) of Spec A.

Exercise 2. Let *B* be a commutative *A*-algebra, *E* an *A*-module, and *F* a *B*-module.

- 1. Explain why F is an A-module, and why $B \otimes_A E$ is a B-module.
- 2. Show that $\operatorname{Hom}_B(B \otimes_A E, F) \cong \operatorname{Hom}_A(E, F)$.

Exercise 3. Show that tensor products commute with direct limits.