Homework 4

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1. Let $\alpha=\sqrt{2+\sqrt{2}} \in \mathbb{R}$.
(a) Determine the minimal polynomial f of α over \mathbb{Q}.
(b) Show that f splits over $E=\mathbb{Q}(\alpha)$.
(c) Show that $\operatorname{Gal}(E / \mathbb{Q})$ contains an element of order 4 .

Exercise 2. Compute the Galois group of the (splitting field of the) polynomial $\left(x^{3}-2\right)\left(x^{2}-5\right)$ over Q.

Exercise 3. Let $\zeta=e^{2 \pi i / 17}, F=\mathbb{Q}(\zeta)$, and $K=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$.
(a) Show that K / Q and F / Q are Galois extensions and determine their Galois groups.
(b) Show that any $F \rightarrow \mathbb{C}$ maps K to \mathbb{R}.

Exercise 4. Let K be a finite non-normal extension of \mathbb{Q} and suppose that K has no subfield other than \mathbb{Q} and itself. Show that the identity is the only automorphism of K.

Exercise 5. Let F be a field and E a Galois extension of F if finite degree. Let $h(x) \in F[X]$ be an irreducible polynomial. Show that all irreducible factors of $h(x)$ in $E[X]$ have the same degree. Give an example to show that this need not be true if E is merely a finite extension.

Exercise 6. Find the Galois group of $x^{12}-3$ over \mathbb{Q}.

