Homework 2

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1. If α is a complex root of $X^{6}+X^{3}+1$, find all homomorphisms $\mathbb{Q}(\alpha) \rightarrow \mathbb{C}$. Hint: The polynomial divides $X^{9}-1$.

Exercise 2. Let α be a real root of $X^{4}-5$. Show that:
(a) $\mathbb{Q}\left(i \alpha^{2}\right) / \mathbb{Q}$ is normal.
(b) $\mathbb{Q}(\alpha+i \alpha) / \mathbb{Q}\left(i \alpha^{2}\right)$ is normal.
(c) $\mathrm{Q}(\alpha+i \alpha) / \mathrm{Q}$ is not normal.

Exercise 3.

(a) If the roots of a monic polynomial $f \in F[X]$ are distinct, and form a field, then char $F=p$ and $f=X^{p^{n}}-X$ for some $n \geq 1$.
(b) Let K be a field with p^{n} elements. Show that every element of K has a unique p-th root in K.

Exercise 4. Let char $K=p$ and $[L: K]<\infty$ coprime to p. Show that L / K is separable.
Exercise 5. Let char $K=p$ and α algebraic over K. Show that α is separable if and only if $K(\alpha)=K\left(\alpha^{p^{n}}\right)$ for all $n \geq 1$.

Exercise 6. Show that every element of a finite field can be written as a sum of two squares in that field.

