Homework 1

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1.

(a) Show that for $a, b \in \mathbb{Q}$ with $\sqrt{a}+\sqrt{b} \neq 0$, we have $\mathbb{Q}(\sqrt{a}+\sqrt{b})=\mathbb{Q}(\sqrt{a}, \sqrt{b})$.
(b) Show that $\mathbb{Q}(\sqrt{2}+\sqrt{3}) / \mathbb{Q}$ is algebraic of degree 4 .

Exercise 2. Let $E=\mathbb{Q}(\alpha)$ where α is a root of the equation $\alpha^{3}+\alpha^{2}+\alpha+2=0$.
(a) What is the minimal polynomial of α over \mathbb{Q}.
(b) Express $(\alpha-1)^{-1}$ in terms of the Q -basis $1, \alpha, \alpha^{2}$ of E.

Exercise 3.

(a) If both a and b are algebraic over F, show that $a+b$ is algebraic over F.
(b) Let $F(\alpha) / F$ be an algebraic extension of odd degree. Show that $F(\alpha)=F\left(\alpha^{2}\right)$.

Exercise 4.

(a) Let E, F be two extensions of K. Show that $[E F: K] \leq[E: K][F: K]$.
(b) Prove that equality holds in (a) if $[E: K]$ and $[F: K]$ are coprime.

Exercise 5. Compute the splitting fields and the degree over \mathbb{Q}.
(a) $\left(X^{3}-2\right)\left(x^{2}-2\right)$
(b) $X^{5}-7$

Exercise 6. Let $f \in F[X]$ be a polynomial of degree n with splitting field K. Show that $[K: F]$ divides $n!$.

