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1. [8] Compute limits:

(a) limx→−4
4−1+x−1

4+x

(b) limt→0

(
1
t
− 1

t2+t

)
(c) limx→−2

x+2
x3+8

(d) limh→0

√
1+h−1
h

Solution:

(a) limx→−4
4−1+x−1

4+x
= limx→−4

1
4x

= − 1
16

(b) limt→0

(
1
t
− 1

t2+t

)
= limt→0

(
t+1−1
t2+t

)
= limt→0

1
t+1

= 1

(c) limx→−2
x+2
x3+8

= limx→−2
1

x2−2x+4
= 1

12

(d) limh→0

√
1+h−1
h

= limh→0
1+h−1

h(
√
1+h+1)

= limh→0
1√

1+h+1
= 1

2
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2. [4] Decide whether the function is continuous. Give arguments for your answer.

(a) f(x) = ln |x− 2|

(b) f(x) =

{
x2−x
x2−1 if x 6= 1

1 if x = 1

Solution:

(a) f(x) is continuous: Its domain consists of two open intervals, (−∞, 2) and
(2,∞). On (−∞, 2), f(x) = ln(2−x) which is continuous; on (2,∞), f(x) =
ln(x− 2) which is continuous, too.

(b) Since

lim
x→1

f(x) = lim
x→1

x2 − x
x2 − 1

= lim
x→1

x

x+ 1
=

1

2
6= 1 = f(1),

f(x) is not continuous at 1.

3. [6] Find all values for a and b such that the function

f(x) =


x2−9
x−3 if x < 1

(x− a)2 if 1 ≤ x < 2

2ax− b if 2 ≤ x

becomes continuous.

Solution: First, note that f(x) = x + 3 for x < 1. Continuity is clear at x 6= 1, 2,
as polynomials are continuous. The following two conditions are equivalent to
continuity at 1 and 2 respectively:

4 = lim
x→1−

f(x) = f(1) = (1− a)2,

(2− a)2 = lim
x→2−

f(x) = f(2) = 4a− b.

The first equality gives a = 1∓ 2, so a = −1 or a = 3. Then the second equality
reads 5± 4 = (1± 2)2 = 4∓ 8− b which gives b = −1∓ 12. So either a = −1 and
b = −13 or a = 3 and b = 11.
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4. [4] Compute limits:

(a) limx→−∞(x+
√
x2 + 2x)

(b) limx→π
2
+ etanx

Solution:

(a)

lim
x→−∞

(x+
√
x2 + 2x) = lim

x→∞
(
√
x2 − 2x− x)

= lim
x→∞

−2x√
x2 − 2x+ x

= lim
x→∞

−2√
1− 2

x
+ 1

= −1.

(b)

lim
x→π

2
+
etanx = lim

y→−∞
ey

= 0.

5. [6] Find the horizontal and vertical asymptotes of the curves:

(a) y = x2+1
2x2−3x−2 .

(b) y =
√
9x6−x
x3+1

.

Solution:

(a) Horizontal asymptote: y = 1
2

Vertical asymptotes: x = 2, x = −1
2

(b) Horizontal asymptotes: y = ±3
Vertical asymptote: x = −1
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6. [4] If g(x) = 1− x3, compute g′(1) and use it to find the equation of the tangent line
to the curve y = 1− x3 at the point (1, 0).

Solution:

g′(1) = lim
h→0

1− (1 + h)3

h

= lim
h→0

−3h− 3h2 − h3

h
= lim

h→0
−3− 3h− h2

= −3.

Tangent line: y = −3(x− 1) = −3x+ 3.

7. [4] Find a function f(x) and a number a such that the following limit represents f ′(a):

(a) limh→0

4√16+h−2
h

(b) limh→0
cos(π+h)+1

h

Solution:

(a) f(x) = 4
√
x, a = 16.

(b) f(x) = cos(x), a = π.
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8. [4] Compute f ′(x) using the limit definition for f(x) = x3.

Solution:

f ′(x) = lim
h→0

(x+ h)3 − x3

h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h
= lim

h→0
3x2 + 3xh+ h2

= 3x2.

9. [4] The figure shows the graphs of f(x), f ′(x), f ′′(x), f ′′′(x). Identify each curve.

Solution:

(a) is the graph of f ′′′(x).

(b) is the graph of f ′′(x).

(c) is the graph of f ′(x).

(d) is the graph of f(x).

End of examination
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